
Snooze Documentation
Release 3.0.0rc1

Matthieu Simonin

March 13, 2014

CONTENTS

i

ii

CHAPTER

ONE

CONTENTS:

1.1 Snoozenode Administration Guide

1.1.1 Installation of the Command Line Interface (deprecated)

This page describes how to install, configure, and use the Snooze command-line interface (CLI). Note that for the time
being the CLI installation tutorial is for Debian users only. Still as we also provide the CLI binary, with little efforts
you should be able to run it on any distribution after following this tutorial.

Install the client

Get the latest client Debian package from the Downloads page and install it:

($) dpkg -i snoozeclient_X.X-X_all.deb

Configure the client

Open the client configuration package file /usr/share/snoozeclient/configs/snooze_client.cfg. It is split into two parts:
general and statistics

general.bootstrapNodes = localhost:5000,192.168.0.2:5001
general.submissionPollingInterval = 6
general.numberOfMonitoringEntries = 5
general.dumpOutputFile = /tmp/snooze_tree.xml
general.graphPollingInterval = 5

statistics.enabled = false
statistics.output.format = gnuplot
statistics.output.file = /tmp/snooze_results.dat

• General

The client application requires at least one active bootstrap node in order to discover the current group leader (GL).
Consequently it will contact one of the active servers specified in the general.bootstrapNodes list to do so.

The VM submission requests are processed asynchronously in Snooze. The client application submits the re-
quests to the GL and periodically polls it for a reply. The polling interval can be specified using the gen-
eral.submissionPollingInterval parameter.

1

http://snooze.inria.fr/download/

Snooze Documentation, Release 3.0.0rc1

The client application offers features to retrieve VM monitoring information as well as to visualize the sys-
tem hierarchy. Therefore, it needs to send requests to the group manages (GMs). The parameter gen-
eral.numberOfMonitoringEntries specifies the number of monitoring entries client requests from the GMs.

Finally the client application offers a feature to dump the hierarchy layout in the GraphML format to the disk. There-
fore, the general.dumpOutputFile parameter specifies the output file name.

• Statistics

Once enabled (statistics.enabled) the client application will write statistics (e.g. submission time, number of failed
submissions) to the disk. You can specify the statistics output format and the file name using the two parameters:
statistics.output.format, statistics.output.file. Note that currently only GNUPlot output format is implemented.

Control VM life-cycle

On the shell execute the “snoozeclient” command. The following commands are currently supported:

Commands:
define Define virtual cluster
undefine Undefine virtual cluster
add Add virtual machine to the cluster
remove Remove virtual machine from the cluster
start Start virtual cluster/machine
suspend Suspend virtual cluster/machine
resume Resume virtual cluster/machine
shutdown Shutdown virtual cluster/machine
destroy Destroy virtual cluster/machine
info Shows virtual cluster/machine information
list List virtual clusters
visualize Visualize system hierarchy
dump Dump system hierarchy

You can display a help for each command by executing “snoozeclient [command] –help“.

We use the notion of virtual cluster (VC) to group together virtual machines (VMs) prior submission on the client side.
Consequently, in order to submit VMs you first need to define at least one VC and add some VMs to it. To define a
VC execute the following command:

($) snoozeclient define -vcn myVC

Note that you can always undefine/remove the VC using the undefine command.

Contextualize the virtual machines

In order to add VMs to your newly created VC, first disk images and VM templates must be created. Thereby, disk
images must be placed on a storage accessible to all the local controllers (LCs), otherwise they can not be located by
the LCs during submission. For example, if you are using NFS and the QEMU Copy-on-Write (COW) mechanism
you need to go through the following steps: (1) Copy backing file VM image to the mounted storage directory (e.g.
/opt/cloud); (2) Create a COW file from the backing file image for each VM; (3) Create and modify the VM template
to point to the COW image.

Please follow the How you can use qemu/kvm base images to be more productive tutorial now to create and install
your backing file image (also known as base image).

Now that you have your base image installed, you must configure its networking in order to be reachable to the outside
world after submission. Snooze automatically assigns IP addresses to VMs from the system administrator defined
VM subnet (see networking settings in the Admin manual) during submission. This is currently done by encoding
the assigned IP address into the VMs MAC address. When a VM boots it needs to decode this IP from its MAC
address and configure the networking. We use init scripts to accomplish these tasks which will provide different level
of contextualization. Choose one of the methods below depending on your needs.

2 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

• Static Contextualization

If your network parameters (gateway, netmask, nameserver . . .) are static, read Static Contextualization

• Dynamic Contextualization

If you need to have more flexibility on your network parameter, read Dynamic Contextualization . With this method
you will be able to change the network parameters of your virtual machine more easily.

Start the Virtual Machines

The VM can now be added to the VC. Therefore you need to specify the VC name and pass the VM template describing
your VM environment. In addition networking capacity constraints can be specified. For example, Snooze can be
instructed to cap the VMs network capacity requirements to 10MBit/sec. The following command adds a VM those
network capacity is bounded to 10MBit. Note that in case of no network capacity restrictions are given the default
value is 100MBit.

($) snoozeclient add -vcn myVC -vmt /home/user/vmtemplates/debian1.xml -rx 12800 -tx 12800

Note that you can always remove a VM by simply calling: snoozeclient remove -vcn myVC -vmn myVM

You can now either add more VMs and start all of them at once or trigger individual VMs submissions by executing
one of the following commands:

($) snoozeclient start -vcn myVC (starts all VMs belonging to myVC)
or
($) snoozeclient start -vcn myVC -vmn myVM (starts myVM)

If everything went well you should see a similar output.

Name VM address GM address LC address Status
--
debian1 192.168.122.5 10.0.0.2 10.0.0.2 RUNNING

Please see the FAQ for possible problem resolutions (e.g. ERRORs in submission). Otherwise use the user mailing
list or IRC channel to ask questions.

Finally, the client offers a variety of commands to control the VM execution. For example, it is possible to suspend,
resume, shutdown, or destroy VCs/VMs by simply calling:

($) snoozeclient suspend/resume/shutdown or destroy -vcn myVC (all VMs belonging to myVC)
($) snoozeclient suspend/resume/shutdown or destroy -vcn myVC -vmn myVM (only myVM)

Last but not least, VM resource (i.e. CPU, memory, network Rx, network Tx) usage information can be displayed
using the info command either for the entire VC or a single VM. You should see a similar output:

Name CPU Memory Rx/Tx VM GM LC Status
usage usage usage address address address

debian1 0.09 596992 0.12/0.1 192.168.122.5 10.0.0.2 10.0.0.2 RUNNING

Note that it takes some time to propagate the initial VM monitoring information data. During this time the client will
display the “UNKNOWN” message in the usage fields.

System hierarchy visualization and dump

You can use the client to visualize the current hierarchy state (GL, GMs, LCs, VMs) or dump it in GraphML format to
the disk. Visualization requires either a running XServer or X11 forwarding. You can activate visualization by using
the appropriate client command:

1.1. Snoozenode Administration Guide 3

Snooze Documentation, Release 3.0.0rc1

($) snoozeclient visualize

If everything works out a GUI will appear in which you will be able to specify the polling interval and start/stop
the visualization process. Moreover, you will be able to zoom in and out the hierarchy state. The polling interval
specifies the time period in which the client will request system repository information and redraw the hierarchy. This
allows to visualize the system self-organization and healing as well as VM live migrations (e.g. during relocation and
consolidation). The following figure shows an example system visualization with one GL, 2 GMs, 4 LCs, and 2 VMs.
Each components is represented by its own color (e.g. red for GL).

1.1.2 Build new VM images

Depending on your need, you can choose between two contextualization methods.

Static Contextualization

Create the base image

Get the init script from our Download page. It was tested on the Debian as well as Ubuntu operating system. Please
move it to your /etc/init.d/ directory and run the following command to update the init script links.

4 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

($) update-rc.d vmcontext defaults

Your base image should be now ready!

Generate the template

Assumed that the name of your backing file is debian-base.raw, you will need to execute the following command to
create a COW image debian1.qcow2

($) qemu-img create -b debian-base.raw -f qcow2 debian1.qcow2

You can now prepare the VM template. Currently, the client accepts native libvirt templates. It is important that
you choose different names and UUIDs (by the way UUID can be omitted) for your VMs . Otherwise, subsequent
submissions will fail due to naming conflicts. Moreover, disk image path and bridge name must be set correctly. An
example libvirt VM template (debian1.xml) for the KVM hypervisor could look as follows:

<domain type=’kvm’>
<name>debian1</name>
<uuid>0f476e56-67ea-11e1-858e-00216a972a36</uuid>
<memory>597152</memory>
<currentMemory>597152</currentMemory>
<vcpu>1</vcpu>
<os>
<type arch=’x86_64’ machine=’pc-0.12’>hvm</type>
<boot dev=’hd’/>

</os>
<features>
<acpi/>
<apic/>
<pae/>

</features>
<clock offset=’utc’/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>restart</on_crash>
<devices>
<emulator>/usr/bin/kvm</emulator>
<disk type=’file’ device=’disk’>

<driver name=’qemu’ type=’qcow2’/>
<source file=’/opt/cloud/debian1.qcow2’/>
<target dev=’vda’ bus=’virtio’/>
<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ function=’0x0’/>

</disk>
<controller type=’ide’ index=’0’>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x01’ function=’0x1’/>
</controller>
<interface type=’bridge’>

<mac address=’52:54:00:83:25:2b’/>
<source bridge=’virbr0’/>

</interface>
<serial type=’pty’>

<target port=’0’/>
</serial>
<console type=’pty’>

<target type=’serial’ port=’0’/>
</console>
<graphics type=’vnc’ port=’-1’ autoport=’yes’ listen=’0.0.0.0’/>

1.1. Snoozenode Administration Guide 5

Snooze Documentation, Release 3.0.0rc1

<input type=’tablet’ bus=’usb’/>
<input type=’mouse’ bus=’ps2’/>
<memballoon model=’virtio’>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x06’ function=’0x0’/>
</memballoon>

</devices>
</domain>

Note that the bridge name virbr0 must correspond to the bridge configured on the LCs!

Dynamic Contextualization

Principles

Dynamic contextualization mechanism works as the following :

• Test for the presence of a CD in the CD drive of the VM,

• if it exists, mount the CD, test the presence of a script post-install, and run it as root,

• if it does not exist, use dhcp on the first network interface.

Contextualization

Copy the following script in your virtual machine under /usr/local/bin/contextualization.

#!/bin/bash

DEVICE=
[-b /dev/hdb] && DEVICE=/dev/hdb
[-b /dev/sdb] && DEVICE=/dev/sdb
[-b /dev/vdb] && DEVICE=/dev/vdb
[-b /dev/xvdb] && DEVICE=/dev/xvdb
[-b /dev/sr0] && DEVICE=/dev/sr0

if [-b "$DEVICE"];then
/bin/mount -t iso9660 $DEVICE /mnt 2> /dev/null

if [-f /mnt/post-install]; then
bash /mnt/post-install
fi

umount /mnt 2> /dev/null
else
ifup eth0
fi

exit 0

Open /etc/rc.local and call this script :

/usr/local/bin/contextualization

Your base image should be now ready!

6 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

Generate the iso context file

You can download the context files from the Download page. Fill the files common/network and common/routes with
your parameters. This parameters will be applied at boot time on the virtual machines. Generate the context.iso file :

($) genisoimage -RJ -o context.iso context

Share this context file to your virtual machines

The file context.iso created above must be available to your virtual machines. You can move it to the pool you
configured for the snoozeimages service.

You can now start your virtual machine with the GUI, or with the libcloud EC2 driver (if snoozeec2 is enable), or
through the internal API.

Generate the virtual machine template (deprecated)

Assumed that the name of your backing file is debian-base.raw, you will need to execute the following command to
create a COW image debian1.qcow2.

($) qemu-img create -b debian-base.raw -f qcow2 debian1.qcow2

You can now prepare the VM template. Currently, the client accepts native libvirt templates. It is important that
you choose different names and UUIDs (by the way UUID can be omitted) for your VMs. Otherwise, subsequent
submissions will fail due to naming conflicts. Moreover, disk image path and bridge name must be set correctly. An
example libvirt VM template (debian1.xml) for the KVM hypervisor could look as follows:

<domain type=’kvm’>
<name>debian1</name>
<memory>524288</memory>
<vcpu>1</vcpu>
<os>

<type arch="x86_64">hvm</type>
</os>
<clock sync="localtime"/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<devices>

<emulator>/usr/bin/kvm</emulator>
<disk type=’file’ device=’disk’>
<driver name=’qemu’ type=’qcow2’/>

<source file=’/opt/cloud/debian1.qcow2’/>
<target dev=’vda’ bus=’virtio’/>

</disk>
<disk type=’file’ device=’cdrom’>

<source file=’/opt/cloud/context.iso’/>
<target dev=’vdb’ bus=’virtio’/>
<readonly/>

</disk>
<interface type=’bridge’>

<mac address=’00:16:c0:A8:7a:11’/>
<source bridge=’virbr0’/>

</interface>
<serial type=’pty’>

1.1. Snoozenode Administration Guide 7

Snooze Documentation, Release 3.0.0rc1

<source path=’/dev/ttyS0’/>
<target port=’0’/>

</serial>
<console type=’pty’>

<source path=’/dev/ttyS0’/>
<target port=’0’/>

</console>
</devices>
</domain>

Note that the bridge name virbr0 must correspond to the bridge configured on the LCs! Note that the context.iso file
must be accessible from your LCs.

1.1.3 Deployment

The following sections deal with installing the core Snooze system.

Single Machine Setup

Local deployment involves running all the Snooze system components: Bootstrap Node (BN), Group Leader (GL),
Group Managers (GMs), Local Controller (LCs), Snoozeimages and SnoozeEC2, as well as dependencies: Apache
ZooKeeper, libvirtd (and optionnally apache Cassandra and Rabbitmq) on the same machine (e.g. your laptop).

Hardware and OS requirement

• Networking connection for multicast

• Hardware supporting the KVM hypervisor

• Debian wheezy or Ubuntu (12.04 or newer)

Note that snooze is written in java, so any linux flavour should be able to run the system.

Prepare the environment

Install the Java runtime environment, Apache ZooKeeper, and QEMU/KVM.

$ apt-get install openjdk-7-jre zookeeper zookeeperd qemu-kvm libvirt-bin libvirt-dev
$ groupadd snooze
$ useradd -s /bin/false snoozeadmin -g snooze

Add User snoozeadmin the libvirt group.

(Debian)$ adduser snoozeadmin libvirt
(Ubuntu)$ adduser snoozeadmin libvirtd

Install Snooze system packages

Get the latest Snooze client and node Debian packages from the Downloads page and install them.

dpkg -i snoozenode_X.X-X_all.deb
dpkg -i snoozeimages_X.X-X_all.deb
dpkg -i snoozeec2_X.X-X_all.deb

8 Chapter 1. Contents:

http://snooze.inria.fr/download/

Snooze Documentation, Release 3.0.0rc1

Configure snoozeimages according to SnoozeImages Debian package instructions.

Note that alternatively you can install the jar files from the release download page.

Use the local deployment script

The local deployment script is made to facilitative the start of a local cluster. Particularly, it automatically creates all
the configuration files needed to run multiple Snooze and libvirt daemons on a single machine. Moreover it launches
the daemons and the required dependencies (e.g. the Apache ZooKeeper service).

You can get the local deployment script from the Downloads page. Unpack the archive and configure your Snooze
deployment scenario. In other words, you need to inform the script how many BNs, GMs, and LCs you would like to
run on your host. Therefore open the ./scripts/settings.sh file in localcluster subdirectory.

First we will check the paths to the binaries and the config file :

install_directory="/usr/share/snoozenode"
node_jar_file="$install_directory/snoozenode.jar"
node_config_file="$install_directory/configs/snooze_node.cfg"
node_log_file="$install_directory/configs/log4j.xml"

snoozeimages_install_directory="/usr/share/snoozeimages"
snoozeimages_jar_file="$snoozeimages_install_directory/snoozeimages.jar"
snoozeimages_config_file="$snoozeimages_install_directory/configs/snooze_images.cfg"
snoozeimages_log_file="$snoozeimages_install_directory/configs/log4j.xml"

Then we will configure the deployment scenario :

number_of_bootstrap_nodes=1
number_of_group_managers=2
number_of_local_controllers=1

Adapt them to your needs and you are almost done. You are now ready to instruct the script to launch the libvirtd and
Snooze daemons. Note that in case you already have a libvirt and snoozenode daemon running (default installation),
they needs to be stopped to avoid possible port collisions.

$ /etc/init.d/libvirt-bin stop
$ /etc/init.d/snoozenode stop

To list the available local deployment script options start the following command

$./start_local_cluster.sh

Options:
-l Start libvirt
-d Stop libvirt
-s Start cluster
-k Kill cluster

Run the script with “-l” and “-s” options to start the libvirt and Snooze daemons

$./start_local_cluster.sh -l
$./start_local_cluster.sh -s

You now should have your local Snooze cluster up and running. The debug outputs of the Snooze components are
stored in the /tmp/ directory under the file names: snooze_node_bn.log, snooze_node_gm1.log, etc. In case you need
to stop the cluster use the “-d” and “-k” options.

1.1. Snoozenode Administration Guide 9

http://snooze.inria.fr/download/

Snooze Documentation, Release 3.0.0rc1

Check your deployment

• First of all, logs files should have been created in /tmp/snooze*.log. You can check the content of these files

• Test your snoozeimages installation by submitting a curl command :

curl localhost:4000/images

It should return the list of the images in the pool configured in snoozeimages configuration file.

How to change parameters

If you want to change some parameters in the configuration file open the file pointed by $snoozeimages_config_file. By
default it should be /usr/share/snoozenode/configs/snooze_node.cfg. Make your changes and apply them by restarting
the cluster.

$./start_local_cluster.sh -k
$./start_local_cluster.sh -s

How to submit virtual machines ?

First read Build new VM images section to understand how contextualization works with snooze. Basically you have to
generate an iso (context.iso) file and make it available from all the virtual machines. This iso file contains the network
settings used by your virtual machines.

Extra

• Configuring the snoozeweb will allow you to have a web gui for managing Snooze.

• Configuring properly rabbitmq will provide you real time infrastructure plotting in the snooze web interface
(based on web sockets).

• By configuring Cassandra you will benefits from a reliable database to store a huge amount of monitoring datas
and it will enable more features in the snoozeweb interface.

If you are interested in installing optionnal dependency of the Snooze Software (RabbitMQ, Cassandra...) have a look
here :

Snoozeweb

RabbitMQ

Cassandra

Cluster

This page describes how to deploy Snooze on a traditional cluster with one management node hosting all the core
system services (i.e. NFS, Apache ZooKeeper, Bootstrap node, Group leader, and one Group manager) and the rest of
the nodes serving as compute resources (i.e. local controllers).

Note that our preferred Linux distribution is Debian. Consequently, the documentation below requires a working
Debian installation. However, with some efforts you should be able to install Snooze on any Linux distribution by
using the provided Binary (see Downloads section).

If you have managed to install Snooze on your favorite distribution please do not hesitate to contact us with your
documentation. We will review and publish it.

10 Chapter 1. Contents:

http://snooze.inria.fr/download/

Snooze Documentation, Release 3.0.0rc1

Management Node

Management node require :

• Multicast-routing enabled switch

• Hardware supporting the KVM/XEN hypervisor

• Debian Squeeze (Sid pinned) or wheezy operating system

Prepare the environment
$ apt-get install nfs-server ipmitool sudo sun-java6-jre sun-java6-bin zookeeper zookeeperd
$ mkdir -p /opt/cloud
$ echo "/opt/cloud *(rw,sync,no_root_squash,no_subtree_check)" >> /etc/exports
$ /etc/init.d/nfs-kernel-server restart
$ groupadd snooze
$ useradd -d /opt/cloud -s /bin/false snoozeadmin -g snooze
$ "visudo" and add: "snoozeadmin ALL = NOPASSWD: /usr/bin/ipmitool" to the user privilege section

Install and configure Snooze Download and install the latest snoozenode package. You can find the latest snoozen-
ode package on the Downloads page.

:: $ dpkg -i snoozenode_X.X-X_all.deb

Replicate Snooze and logger configuration files for BN, GL, and GM:

$ cp /usr/share/snoozenode/configs/snooze_node.cfg /usr/share/snoozenode/configs/snooze_node_bn.cfg
$ cp /usr/share/snoozenode/configs/snooze_node.cfg /usr/share/snoozenode/configs/snooze_node_gm_1.cfg
$ cp /usr/share/snoozenode/configs/snooze_node.cfg /usr/share/snoozenode/configs/snooze_node_gm_2.cfg

$ cp /usr/share/snoozenode/configs/log4j.xml /usr/share/snoozenode/configs/log4j_bn.xml
$ cp /usr/share/snoozenode/configs/log4j.xml /usr/share/snoozenode/configs/log4j_gm_1.xml
$ cp /usr/share/snoozenode/configs/log4j.xml /usr/share/snoozenode/configs/log4j_gm_2.xml

$ cp /etc/init.d/snoozenode /etc/init.d/snoozenode_bn
$ cp /etc/init.d/snoozenode /etc/init.d/snoozenode_gm_1
$ cp /etc/init.d/snoozenode /etc/init.d/snoozenode_gm_2

Modify the snoozenode configuration files: snooze_node_bn.cfg, snoozenode_gm_1.cfg,snoozenode_gm_2.cfg. In
the bootstrap node configuration file set:

node.role = bootstrap

In the first group manager configuration file set:

node.role = groupmanager
network.listen.controlDataPort = 5001
network.listen.monitoringDataPort = 6001
network.virtualMachineSubnet = XXX.XXX.XXX.0/24 (your VM subnet)

In the second group manager configuration file set:

node.role = groupmanager
network.listen.controlDataPort = 5002
network.listen.monitoringDataPort = 6002
network.virtualMachineSubnet = XXX.XXX.XXX.0/24 (your VM subnet)

Modify the logger configuration files: log4j_bn.xml, log4j_gm_1.xml, and log4j_gm_2.xml

1.1. Snoozenode Administration Guide 11

http://snooze.inria.fr/download/

Snooze Documentation, Release 3.0.0rc1

change the output file name “snooze_node.log” to “snooze_node_bn.log”, “snoozenode_gm_1.log”, and “snoozen-
ode_gm_2.log” respectively

Modify the snoozenode init scripts: snoozenode_bn, snoozenode_gm_1, and snoozenode_gm_2 Change the following
lines in the same manner as the logger configuration files:

Provides: snoozenode -> Change to snoozenode_bn/gm_1/gm_2
SCRIPT_NAME="snoozenode" -> Change to snoozenode_bn/gm_1/gm_2
PID_FILE="/var/run/snoozenode.pid" -> Change to snoozenode_bn/gm_1/gm_2.pid
SYSTEM_CONFIGURATION_FILE="$CONFIGS_DIRECTORY/snooze_node.cfg" -> Change to snooze_node_bn/gm_1/gm_2.cfg
LOGGER_CONFIGURATION_FILE="$CONFIGS_DIRECTORY/log4j.xml" -> Change to log4j_bn/gm_1/gm_2.xml

Update the init script links:

$ update-rc.d -f snoozenode remove
$ update-rc.d snoozenode_bn defaults
$ update-rc.d snoozenode_gm_1 defaults
$ update-rc.d snoozenode_gm_2 defaults

$ /etc/init.d/snoozenode_bn start
$ /etc/init.d/snoozenode_gm_1 start
$ /etc/init.d/snoozenode_gm_2 start

You now should have one bootstrap node, group leader, and group manager running. Please refer to logs
(/tmp/snooze_node_*.log) to see if all components are running. For example bootstrap node should be receiving
group leader heartbeats.

On all compute nodes

Prepare the environment Install the dependencies

$ apt-get install kvm qemu-kvm libvirt-bin libvirt-dev bridge-utils nfs-common sudo sun-java6-jre sun-java6-bin
$ apt-get install ipmitool pm-utils

Modify the /etc/hosts file

127.0.0.1 localhost.localdomain localhost
XXX.XXX.XXX.XXX yourHostName

Make sure your set the right IP and hostname of your main network interface. Enable bride networking
/etc/network/interfaces

If your main network interface is eth0 modify as follows:

auto lo
iface lo inet loopback

auto br0
iface br0 inet dhcp
bridge_ports eth0
bridge_stp on
bridge_maxwait 0

Restart networking:

$ /etc/init.d/networking restart

Please see http://wiki.debian.org/BridgeNetworkConnections for more details on bridge network connections. Ensure
NFS is remounted in case the node gets rebooted: modify /etc/rc.local and add

12 Chapter 1. Contents:

http://wiki.debian.org/BridgeNetworkConnections

Snooze Documentation, Release 3.0.0rc1

mount -a

Add snooze group and snoozeadmin user to the system

$ groupadd snooze
$ useradd -d /opt/cloud -s /bin/false snoozeadmin -g snooze -G kvm

Configure the libvirt daemon by editing the following files libvirtd.conf, libvirt-bin, and qemu.conf

In /etc/libvirt/libvirtd.conf: disable TLS and enable TCP listing, disable TCP authentication:

listen_tls = 0
listen_tcp = 1
auth_tcp = "none"

In /etc/default/libvirt-bin

libvirtd_opts="-d -l"

In /etc/libvirt/qemu.conf enter the snooze user and group information:

user = "snoozeadmin"
group = "snooze"

Restart the libvirt daemon:

$ /etc/init.d/libvirt-bin restart

Configure the NFS server

$ mkdir /opt/cloud
$ echo "<MANAGEMENT_NODE_IP>:/opt/cloud /opt/cloud nfs rw 0 0" >> /etc/fstab
$ mount -a

If you need power management features “visudo” and add to the user privilege section:

snoozeadmin ALL = NOPASSWD: /sbin/shutdown
snoozeadmin ALL = NOPASSWD: /usr/bin/ipmitool
snoozeadmin ALL = NOPASSWD: /usr/sbin/pm-suspend
snoozeadmin ALL = NOPASSWD: /usr/sbin/pm-hibernate
snoozeadmin ALL = NOPASSWD: /usr/sbin/pm-suspend-hybrid
snoozeadmin ALL = NOPASSWD: /usr/sbin/s2ram
snoozeadmin ALL = NOPASSWD: /usr/sbin/s2disk
snoozeadmin ALL = NOPASSWD: /usr/sbin/s2both

Install and configure Snooze Download and install the latest snoozenode package.You can find the latest snoozen-
ode package on the Downloads page.

$ dpkg -i snoozenode_X.X-X_all.deb

Configure the snoozenode daemon. Open the configuration file: /usr/share/snoozenode/configs/snooze_node.cfg

Set the node.role

node.role = localcontroller

If you require power management, specify how this LC should be woken up. In this example the node is woken up
using IPMI. Note that depending on your hardware different options must be passed to the IPMI driver. Currently,
IPMI driver internally calls the ipmitool to enforce the commands. Note that you must verify that IPMI wake up works
prior entering any information here, otherwise wake ups will fail.

1.1. Snoozenode Administration Guide 13

http://snooze.inria.fr/download/

Snooze Documentation, Release 3.0.0rc1

Wakeup driver (IPMI, WOL, kapower3, test)
energyManagement.drivers.wakeup = IPMI

Wakeup driver specific options
For IPMI
energyManagement.drivers.wakeup.options = -I lanplus -H <BMC_IP> -U <user> -P <password>

Start the snoozenode daemon

$ /etc/init.d/snoozenode start

Your Snooze cluster should be now up and running. Please see the log file (/tmp/snooze_node.log) to verify that
everything works as it should and install more LCs if needed. You can also use the CLI to visualize the current system
state. Please refer to the User manual for more information.

Note that Snooze deployment is not limited to the scenario described above. For example you could imagine installing
all the system components (Apache ZooKeeper, BN, and more GMs) on dedicated servers to enhance scalability and
fault tolerance. On the other hand you could also have a configuration in which servers act as management as well
as compute nodes (i.e. having GM and LC on the same host). You should be able to realize such configurations with
little effort after following this tutorial.

Multi-Nodes Cluster on Grid‘5000 using capistrano.

This page deals with the deployment of the Snoozenode, Snoozeimages and SnoozeEC2 system services.

Get the deployment script

The prefer way of getting the code is to clone the repository.

git clone git://github.com/msimonin/snooze-capistrano.git

Move to the release (tag) of your choice with :

cd snooze-capistrano
git checkout v2.1.1

Alternatively you can get it from the Downloads page and install it.

Note that not checking out a particular tag will give you the latest version (not released yet and thus under develop-
ment).

Have a correct ruby environment

This deployment assumes that ruby >= 1.9.3 and requires bundler gem.

Install bundler

gem install bundler

Check rvm if you need to deal with several ruby environments.

Once it’s done, you just have to launch in the snooze-capistrano directory:

bundle install

14 Chapter 1. Contents:

http://snooze.inria.fr/download/

Snooze Documentation, Release 3.0.0rc1

Configure Restfully

The script makes use of Restfully to manage connections to the Grid‘5000 API.

Create the file ~/.restfully/api.grid5000.fr.yml with this content :

base_uri: https://api.grid5000.fr/stable/grid5000
username: "login"
password: "xxxxx"

Check the deployment parameters

• Open config/deploy.rb and replace the ssh settings with you own settings.

The deployment script will generates an iso file on your local machine. You’ll need to tell to the script what tool need
to be used to generate this iso.

• In config/deploy.rb set the mkisotool to the right command.

Note : yes, I know it is not very practical, and should be changed in the next version of the script.

• Open config/deploy/xp5k/xp5k_[version] to check the deployment parameters (number of nodes ...)

Automatic deployment

You’re now ready to launch the deployment :

cap automatic

Note : I’ll have to remove the previously created .xp_cache before resubmitting new jobs.

Web Interface

The web interface is installed on the bootstrap node at the end of the deployment. Assuming that the bootsrap node is
paradent-4, open you browser and connect to the following url :

https://paradent-4.rennes.proxy-http.grid5000.fr

AMQP messages can be captured by the browser to display and update the system hierarchy. You just have to create a
ssh tunnel from your local machine to the bootstrap node (hosting the rabbitmq broker).

ssh -NL 55674:bootstrap:55674 login@access.grid5000.fr

Alternatively, if something went wrong during the deployment of the web interface. You can follow Snoozeweb to
install this interface on your local machine.

Overview of the tasks available

• cap -T will give you the available tasks for your deployment.

cap automatic # Automatic deployment
cap cassandra # Deploy Cassandra on nodes
cap cassandra:opscenter # Install the opscenter
cap cassandra:schema # Install the database schema
cap clean # Remove all running jobs

1.1. Snoozenode Administration Guide 15

Snooze Documentation, Release 3.0.0rc1

cap deploy # Deploy with Kadeploy
cap describe # Describe the cluster
cap experimental # Set the target stage to ‘experimental’.
cap invoke # Invoke a single command on the remote servers.
cap master # Set the target stage to ‘master’.
cap multistage:prepare # Stub out the staging config files.
cap nfs # Deploy NFS on nodes
cap nfs:client # Configure NFS clients
cap nfs:server # Configure NFS server
cap rabbitmq # Deploy RabbitMQ on nodes
cap sandbox # Set the target stage to ‘sandbox’.
cap shell # Begin an interactive Capistrano session.
cap snooze # Install Snooze on nodes
cap snooze:cluster # Configure the cluster
cap snooze:cluster:shutdown # Power down localcontrollers
cap snooze:cluster:start # Start cluster
cap snooze:cluster:stop # Stop cluster
cap snooze:cluster:wakeup # Wake Up localcontrollers
cap snooze:plugins # Install plugins
cap snooze:prepare # prepare the nodes
cap snooze:provision # Provision all the nodes
cap submit # Submit jobs
cap v2.1.0 # Set the target stage to ‘v2.1.0’.

Basic usage

I would like to change ... file
My ssh keys config/deploy.rb
The site config/deploy.rb
The walltime config/deploy.rb
The number of nodes config/xp5k/xp5k_2.x.x.rb
The snooze parameters recipes/snooze/templates/snoozenode.erb

After changing the snooze parameters you can invoke :

cap snooze:cluster:stop snooze:provision snooze:cluster:start

It will reprovision the cluster and restart it with the new parameters.

If you need to change the topology (eg : number of groupmanagers), you will have to redeploy the whole clutser.

Customize deployment

If you would like to add steps in the deployment (typically at the end of the original deployment) a good practice is to
add a new stage in the capistrano deployment process.

• Create a new stage by copying an existing one :

cp config/deploy/v2.1.0.rb config/deploy/mystage.rb

and add it to capistrano in the config/deploy.rb in the line :

set :stages, %w(... mystage ...)
set :default_stage, "mystage" # optional

Now cap mystage command or cap v2.1.0 command since you have copied v2.1.0.rb.

16 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

Setting mystage as default stage will allow you to invoke command without specifying which state you want : cap
command

• Add your recipe in mystage.rb :

recipes = [..., ..., ..., myrecipe]
[...]
after ..., ..., ..., myrecipe

You just have to create your recipe under recipes/recipe/myrecipe/recipe.rb and it will be invoked at the end of the
deployment.

Directory Structure

Capfile
-- config
| -- deploy
| | -- experimental.rb
| | -- latest.rb
| | -- master.rb
| | -- sandbox.rb
| | -- xp5k
| | -- xp5k_2.x.rb
| | -- xp5k_common_roles.rb
| | -- xp5k_common_tasks.rb
| | -- xp5k_master.rb
| | -- xp5k_sandbox.rb
| | -- xp5k_testing.rb
| -- deploy.rb
| -- lib
| -- spinner.rb
-- Gemfile
-- Gemfile.lock
-- README.md
-- recipes
| -- cassandra
| | -- output.rb
| | -- recipe.rb
| | -- roles.rb
| | -- schema
| | | -- schemadown.cas
| | | -- schemaup.cas
| | -- templates
| | | -- cassandra.erb
| | -- tmp
| | -- cassandra.pp
| | -- readme.txt
| -- dfs
| | -- module
| | | -- manifests
| | | -- init.pp
| | -- output.rb
| | -- recipe.rb
| | -- roles.rb
| | -- templates
| | | -- dfs-client.erb
| | | -- glusterfs.erb
| | -- tmp

1.1. Snoozenode Administration Guide 17

Snooze Documentation, Release 3.0.0rc1

| | -- readme.txt
| -- keystone
| | -- output.rb
| | -- recipe.rb
| | -- roles.rb
| | -- templates
| | | -- keystone.erb
| | | -- keystone.erb~
| | -- tmp
| | -- keystone.pp
| | -- rabbitmq.pp
| | -- readme.txt
| -- nfs
| | -- module
| | | -- files
| | | | -- etc
| | | | -- idmapd.conf
| | | -- manifests
| | | -- init.pp
| | | -- server.pp
| | -- output.rb
| | -- recipe.rb
| | -- roles.rb
| | -- templates
| | | -- nfs-client.erb
| | | -- nfs_server.erb
| | | -- nfs-server.erb
| | -- tmp
| | -- nfs-client.pp
| | -- nfs-server.pp
| | -- readme.txt
| -- rabbitmq
| | -- output.rb
| | -- recipe.rb
| | -- roles.rb
| | -- templates
| | | -- rabbitmq.erb
| | -- tmp
| | -- rabbitmq.pp
| | -- readme.txt
| -- snooze
| | -- network
| | | -- configure_network.sh
| | | -- context
| | | | -- common
| | | | | -- network
| | | | | -- routes
| | | | -- context.sh
| | | | -- distributions
| | | | | -- debian
| | | | | -- 00_network
| | | | -- init.sh
| | | | -- lib
| | | | | -- functions
| | | | | -- mac-ip.cfg
| | | | -- post-install
| | | -- interfaces
| | -- output.rb

18 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

| | -- recipe.rb
| | -- roles.rb
| | -- templates
| | | -- network.erb
| | | -- snoozenode.erb
| | -- tmp
| | -- bootstrap.pp
| | -- context.iso
| | -- groupmanager.pp
| | -- localcontroller.pp
| | -- readme.txt
| -- snoozeec2
| | -- output.rb
| | -- recipe.rb
| | -- roles.rb
| | -- templates
| | | -- snoozeec2.erb
| | -- tmp
| | -- readme.txt
| | -- snoozeec2.pp
| -- snoozeimages
| | -- output.rb
| | -- recipe.rb
| | -- roles.rb
| | -- templates
| | | -- snoozeimages.erb
| | -- tmp
| | -- readme.txt
| | -- snoozeec2.pp
| -- snooze_webinterface
| -- output.rb
| -- recipe.rb
| -- roles.rb
| -- tmp
| -- readme.txt
-- xp.conf
-- xp.log

Multi-Nodes Cluster on Grid‘5000 (deprecated)

Installation and Usage

• Make a reservation

(frontend)$ oargridsub -t deploy -w 1:00:00 rennes:rdef="{\\\\\\\"type=’kavlan-global’\\\\\\\"}/vlan=1+/nodes=3",lyon:rdef=/nodes=3,sophia:rdef=/nodes=3 > ~/oargrid.out

NB1 : On a single site you don’t need to reserve a vlan. The reservation could be :

(frontend)$ oarsub -I -t deploy -l slash_22=1,nodes=10,walltime=8

NB2 : With a multisite reservation, the file oargrid.out is used by the script so it must be placed in your home directory.

If everything is fine this file looks like :

rennes:rdef={\\\"type=’kavlan-global’\\\"}/vlan=1+/slash_22=1,lyon:rdef=/nodes=3,sophia:rdef=/nodes=3
[OAR_GRIDSUB] [rennes] Date/TZ adjustment: 0 seconds
[OAR_GRIDSUB] [rennes] Reservation success on rennes : batchId = 471354

1.1. Snoozenode Administration Guide 19

Snooze Documentation, Release 3.0.0rc1

[OAR_GRIDSUB] [lyon] Date/TZ adjustment: 0 seconds
[OAR_GRIDSUB] [lyon] Reservation success on lyon : batchId = 599979
[OAR_GRIDSUB] [sophia] Date/TZ adjustment: 0 seconds
[OAR_GRIDSUB] [sophia] Reservation success on sophia : batchId = 530702
[OAR_GRIDSUB] Grid reservation id = 42581
[OAR_GRIDSUB] SSH KEY : /tmp/oargrid//oargrid_ssh_key_msimonin_42581
You can use this key to connect directly to your OAR nodes with the oar user.

• Connect to your job (with the kavlan reservation):

(frontend)$ oarsub -C 471354

• Configure the proxy :

(frontend)$ export https_proxy="http://proxy:3128"

• Clone the git repository :

(frontend)$ git clone https://github.com/snoozesoftware/snooze-deploy-grid5000.git
(frontend)$ git checkout 1.1.0

• Download latest version of debian package (snoozenode is require, snoozeclient is optional) :

(frontend)$ cd ~/snooze-deploy-grid5000/deb_packages/
(frontend)$ wget https://ci.inria.fr/snooze-software/job/maint-1.1.0-snoozenode/ws/distributions/deb-package/snoozenode_1.1.0-0_all.deb
(frontend)$ wget https://ci.inria.fr/snooze-software/job/maint-1.1.0-snoozeclient/ws/distributions/deb-package/snoozeclient_1.1.0-0_all.deb

Other packages could be found in https://ci.inria.fr/snooze-software/.

Configure and launch the deployment

• Configure the number of nodes in the settings.sh and the deployment type :

(frontend)$ cd ~/snooze-grid5000-multisite/deployscript/
(frontend)$ vi scripts/settings.sh

multisite=true|false
storage_type="nfs|local"
number_of_bootstrap_nodes=1
number_of_group_managers=2
number_of_local_controllers=5

NB : Since we use a “service node” for the deployment you will get a Snooze cluster running with n-1 nodes. NB2
: If you set storage type to “local”, the VMs base images will be propagated by scp-tsunami, you have to install it in
/opt of the first bootstrap (see settings.sh of experiments scripts).

• Retrieve VMs base images in ~/vmimages/

You can get my debian base image in /home/msimonin/vmimages in Rennes (see Snooze documentation to know how
to generate a new image)

(frontend)$ scp -r <yourlogin>@rennes:/home/msimonin/vmimages ~/.

• Launch the automatic script :

(frontend)$./snooze_deploy.sh -a

20 Chapter 1. Contents:

https://ci.inria.fr/snooze-software/

Snooze Documentation, Release 3.0.0rc1

Use the system

• Connection to the first bootstrap :

(frontend)$ cat tmp/bootstrap_nodes.txt
(frontend)$ ssh -l root <first bootstrap>

• Launching VMs :

The first bootstrap node hosts some helper to launch VMs.

(bootstrap)$ cd /tmp/snooze/experiments
(bootstrap)$./experiments -c test 5
(bootstrap)$ snoozeclient start -vcn test

These commands will create and start 5 VMs.

• Visualizing the system :

Make a tunnel (or export your display) from your laptop to the bootstrap through the grid‘5000 frontend on port 5000.
If snoozeclient is installed on your PC, you can launch :

(PC) snoozeclient visualize.

Puppet Recipes

If you are interested in installing optionnal dependency of the Snooze Software (RabbitMQ, Cassandra...) have a look
here :

RabbitMQ Cassandra

1.1.4 Snoozenode Config File

Snooze system configuration is done using its main configuration file /usr/share/snoozenode/configs/snooze_node.cfg.
You should be able to find it on each node after installation. It is partitioned into several categories. you can find the
description of each categorie below.

Node

• node.role

Each node can play the role of either a bootstrap, groupmanager, or localcontroller. It is up to the system administrator
to decide on the role and the number of nodes dedicated to a role during the system setup.

• node.networkCapacity.Rx and node.networkCapacity.Tx

Available networking capacity (Rx and Tx) must be configured for each local controller (LC). It is set to
1 Gb (= 131072 kB) by default.

Networking

• network.listen.address

Binds the Snooze service to the specified address. By default it listen on all interfaces.

• network.listen.controlDataPort

Control data port is required for the REST communication on each node.

1.1. Snoozenode Administration Guide 21

Snooze Documentation, Release 3.0.0rc1

• network.listen.monitoringDataPort

Monitoring data port is used by the GMs and the GL to receive monitoring data from LCs (resp. GMs).

• network.multicast.address

Multicast address is used to periodically propagate heartbeat information.

• network.multicast.groupManagerHeartbeatPort

The multicast port on which a GM announces its presence (must be distinct on each GM).

• network.virtualMachineSubnet

Coma separated list of virtual machine subnets from which Snooze will assign IPs to VMs.

Httpd

• httpd.maxNumberOfThreads

Adjust the maximum number of threads in the pool to handle incoming RESET requests.

• httpd.maxNumberOfConnections

The maximum number of allowed connections.

• httpd.minThreads

Minimum number of active threads.

• httpd.lowThreads

Low number of active threads.

• httpd.maxThreads

Maximum number of active threads.

• httpd.maxQueued

Max Idle Time (0 for infinite)

Hypervisor

• hypervisor.driver

The name of the underlying hypervisor driver. It is set to qemu by default.

• hypervisor.transport

The transfer method between the hypervisors (i.e. libvirt daemons). It is set to tcp by default. Note that the system has
only been tested using the tcp transport for now! You will need to configure libvirtd accordingly to use other transport
methods.

• hypervisor.port

The local libvirtd listen port. LCs will use it to connect to contact libvirt.

• hypervisor.migration.method

You can choose different migration methods as supported by libvirt (see virDomainMigrateFlags for more details).
Currently, Snooze supports live migration, migration with non-shared storage with full disk copy, and migration with
non-shared storage with incremental copy. The latter is the default setting.

• hypervisor.migration.timeout

22 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

In some hypervisors (e.g. KVM) migration can last forever if the number of pages that got dirty is larger than the
number of pages that got transferred to the destination LC during the last transfer period. Snooze implements a
watchdog mechanisms to force convergence in such situations. Therefore, a timeout must be specified above which
the system will suspend the VMs and thus let them finish migrating (i.e. no dirty pages anymore).

Fault Tolerance

• faultTolerance.zookeeper.hosts

You must give a list with at least one ZooKeeper host which will be used to coordinate the group leader (GL) election.

• faultTolerance.zookeeper.sessionTimeout

The amount of time above with the ZooKeeper session is considered terminated.

• faultTolerance.heartbeat.interval

Heartbeat messages are periodically sent from the GL to the GMs and from GMs to the LCs. You can tweak the
sending intervals using this parameter.

• faultTolerance.heartbeat.timeout

The amount of time above which the heartbeat is considered lost.

Database

System management meta-data as well as monitoring information is stored at the GL as well as at the GMs. The
database settings allow you to tweak some of the storage parameters.

• database.type

System information can be either stored in-memory or on some persistent storage (e.g. MySQl, MongoDB, etc.).
Currently only in-memory storage is supported.

• database.numberOfEntriesPerGroupManager

In order to avoid running out of storage capacity you need to specify the maximum number of entries
per group manager. For example, if set to 20 the GL will store 20 monitoring entries per GM and start
overwriting the oldest ones in case the limit has been reached. In other words, the storage is implemented
as a circular buffer.

• database.numberOfEntriesPerVirtualMachine

Similarly to the previous setting the GM must be instructed to respect a certain upper bound on the number
of monitoring entries per VM.

Monitoring

• monitoring.interval

Controls the time interval at which monitoring data is sent from the LCs to GMs and GMs to GL.

• monitoring.timeout

The amount of time above which monitoring data is considered as lost. Note that the monitoring timeout is also used
to detect GM and LC failures. For example, if GM monitoring data is lost the GL considers it as failed. Similarly,
when LC monitoring data is lost it is considered as failed by the GM in charge.

• monitoring.numberOfMonitoringEntries

1.1. Snoozenode Administration Guide 23

Snooze Documentation, Release 3.0.0rc1

Overload and underload anomaly detection is performed based on aggregates. Particularly, each LC first collects a
certain amount of monitoring data entries per VM period starting the anomaly detection. You can control this amount
using this parameter.

• monitoring.thresholds.<resource>

For each resource (i.e. CPU, memory, and network) Snooze defines three thresholds (MIN, MID, and MAX). When
the aggregated utilization in one of the resources falls below the MIN threshold the LC is considered underloaded.
Similarly, if the utilization crosses the MAX threshold the LC is considered overloaded. The MID threshold is used
to cap the max allowed used resource capacity. This allows to keep a buffer of spare resources to compensate during
periods of high resource contention. For example if set to 0.5 at max 50% of the available resource capacity will be
available to host VMs.

Example :

monitoring.thresholds.cpu = 0, 1, 1

monitoring.thresholds.memory = 0, 1, 1

monitoring.thresholds.network = 0, 1, 1

monitoring.estimator.<resource>

You can implement different estimators for each resource and choose between them using this parameter. Estimations
are currently made using estimator.numberOfMonitoringEntries values.

Example : # This will use the built-in average estimator.

monitoring.estimator.cpu = average

This is equivalent to specifying the fully qualified name of the estimator class

monitoring.estimator.cpu = org.inria.myriads.snoozenode.groupmanager.estimator.api.impl.AverageCPUDemandEstimator

For a custom estimator (see Plugins System Overview) you’ll have to specify the fqn as above.

External Notifier

Snooze can send notification to the external world about what happens in the system. See the rabbitmq section of the
documentation to know how to configure the rabbitmq service.

• external.notifier.transport

Transport type to use for sending notification. Only RABBITMQ is supported.

• external.notifier.address

• external.notifier.port

Where to send notification. For example the address and the port of the rabbitmq broker.

• external.notifier.username

• external.notifier.password

Credentials.

• external.notifier.vhost

Rabbitmq virtual host.

24 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

Estimation

Estimator is used for all estimation of the nodes (groupmanagers, localcontrollers, virtualmachines), thus it plays a
key role in placement, consolidation, anomaly detection/resolution...

• estimator

Possible values are : staticdynamic (default) or fqn of the estimaton class (see Plugins System Overview)

• estimator.numberOfMonitoringEntries

The maximum number of monitoring entries per VM to consider in estimations. For example, it is possible
to instruct the system to use the most recent 15 monitoring entries per VM in its estimations.

• estimator.options One line json (key, values).

Example : for the staticdynamic

estimator.options = {“static”: “true”, “sortNorm” : “L1”, “packingDensityCpu”: 1, “packingDensityMemory”: 1,
“packingDensityNetwork”: 1}

static:true means that estimations should be based on static values only. Particularly, if your VM requests 3 GB of
RAM during submission but uses on average 2 GB only according to the collected monitoring data, the estimator
would still consider the requested capacity when requested to do estimations.

Sorting VMs requires their resource usage vectors to be mapped to scalar values. Therefore different vector norms
(e.g. L1, Euclid, Max) can be used.

You can define a packing density for each resource. It will be considered during initial VM placement and allow the
VM to be hosted on a LC despite existing MID capping. For example, of a LC has 4 PCORES and the CPU MID
threshold (monitoring.thresholds.cpu) is set to 0.5 it is only possible to load it for up to 2 PCORES, keeping two other
cores as buffered capacity. If a VM is now submitted which requires 4 VCORES it impossible to place it on the LC.
However, with the packing density set to 0.4 it will be considered as a VM requiring only 1.6 VCORES thus allowing
it to be placed. Note that packing density < 1 facilitates resource overcommit and thus can lead to serious performance
problems. We suggest to keep it at the default value (=1) in case performance is important.

Group Leader Scheduler

• groupLeaderScheduler.assignmentPolicy

Possible values are random, roundrobin or the fully qualified name of the assignement policy (see Plugins System
Overview).

When a LC attempts to join the hierarchy it needs to know which GM to join. The assignment pol-
icy is in charge of selecting the GM. Currently two assignment policies are implemented: RoundRobin
and FirstFit. You can integrate you own assignment policies by implementing the provided assignment
interface.

• groupLeaderScheduler.dispatchingPolicy

Possible values are firstfit, roundrobin or the fully qualified name of the dispatching policy (see Plugins System
Overview).

When a client attempts to submit a VC, its VMs need to be dispatched to GMs. The dispatching policy makes the
GM choice according to the aggregated GM monitoring data. Currently two dispatching policies are implemented:
RoundRobinSingleGroupManager and FirstFitSingleGroupManager.

Note that aggregated information might be not sufficient to take exact dispatching decisions. For instance, when a
client submits a VM requesting 2GB of memory and a GM reports 4GB available it does not necessary mean that the
VM can be finally placed on this GM as its available memory could be distributed among multiple LCs (e.g. 4 LCs

1.1. Snoozenode Administration Guide 25

Snooze Documentation, Release 3.0.0rc1

with each 1GB of RAM). Consequently, a list of candidate GMs can be returned by the dispatching policies. Based on
this list, the GL performs a linear search by issuing VM placement requests to the GMs.

Existing dispatching policies return a list with a single element (i.e. GM). Consequently when the submission fails on
the selected GM, no other will be tried. However, similarly to the assignment policies different dispatching policies
can be integrated by implementing the appropriate dispatching interface.

Group manager scheduler

• groupManagerScheduler.placementPolicy

Possible values are firstfit, roundrobin or the fully qualified name of the dispatching policy (see Plugins System
Overview).

The placement policy is used to do initial assignment’s of VMs to LCs upon submission. Default installation comprises
Two placement policies : RoundRobin and FirstFit. You can write your own placement policy (see Plugins System
Overview). You can load your specific placement policy by specifying the fully qualified name of your class :

groupManagerScheduler.placementPolicy=org.inria.myriads.snoozenode.groupmanager.managerpolicies.placement.impl.MyPlacement

• groupManagerScheduler.relocation.

The overload and underload policies are triggered to resolve overload (resp. underload) anomaly situation. Both
policies return a migration plan which specifies which VMs and to which LCs they need to be migrated to resolve the
anomaly situations.

• groupManagerScheduler.reconfiguration.enabled

Complementary to the relocation mechanisms, reconfiguration can be enabled to periodically optimize the VM place-
ment of moderately loaded VMs.

• groupManagerScheduler.reconfiguration.policy

You can implement any reconfiguration policy. However, currently Snooze implements a modified version of
the Sercon consolidation algorithm. Please refer to Publications for more details. * groupManagerSched-
uler.reconfiguration.interval

A cron expression which allows to provide a very flexible configuration of the reconfiguration interal (e.g. every night
at 1 AM).

Submission

• submission.dispatching.

When the client application attempts to submit a VC to the the GL, GL instructs the selected GMs to start VMs.
If a GM is busy (e.g. it is in relocation or reconfiguration state), the submission requests are rejected by the GMs
state machine. The GL implements retry logic to resent submission requests a predefined number of times within a
predefined interval until it considers the VM submission request as failed. You can tune the retry behavior using the
numberOfRetries and retryInterval parameters.

• submission.collection.

Collection parameters control the VC submission response gathering. Particularly, as soon VMs have been accepted by
a GM for submission, the GL will poll the GMs involved in the submission to retrieve the VM submission responses.
Note that accepted for submission solely means that it has been added to the to be scheduled queue on the GM. The
actual VM placement can take some time depending on the resource availability. For example, if LCs in a deep power
saving state (e.g. shutdown) need to be woken up, typically several minutes are required until they become available
and can be considered in the VM placement. It is absolutely crucial to set the numberOfRetries and retryInterval
parameters carefully and we strongly advise you to keep the default values as they are. Setting both parameters too
low will result in the client receiving failed VM submission responses.

26 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

Similarly to dispatching two parameters exist to control the response gather behavior: numberOfRetries and retryIn-
terval. The number of retries parameter makes sure that polling terminates in case when the responses never become
available due to internal errors while the retry interval specifies the polling period.

Energy Management

• energyManagement.enabled

Enables/disables the energy saving module. Once enabled it will periodically observe the LCs and transitioned idle (=
not hosting any VMs) LCs into a lower power-state.

• energyManagement.numberOfReservedNodes

You can set the number of reserved nodes using this parameter. In case of a positive value the GM will keep the
predefined number of LCs always online.

• energyManagement.powerSavingAction

In case the decision has been made to transition an idle LC into a lower power state the power saving
action will be triggered. You can choose between: shutdown, suspendToRam, suspendToDisk, and sus-
pendToBoth. Note that you have to make sure that your hardware supports the selected action.

• energyManagement.drivers.

You can choose different drivers to shutdown and wake up the system. For example, shutdown can be
achieved using the native system shutdown command or IPMI. Similarly, various Linux scripts exist to
trigger suspend actions (e.g. pmutils, uswsusp). Finally, a several wake up methods such as IPMI and
Wake-On-Lan (WOL) exist with each of them requiring different arguments. You can use the options
parameter to pass additional arguments (e.g. MAC address for WOL or authentication data for IPMI).

You can select the driver you think is supported in your environment or implement your own driver by implementing
the appropriate driver interface (see Developers documentation for more details). Note that you have to configure your
system properly by installing the appropriate tools required by the drivers and give them enough system access rights
to operate correctly. Please see the Deployment documentation for more details.

• energyManagement.thresholds.idleTime

The time interval in seconds used to observe the LC load (e.g. every 120 seconds).

• energyManagement.thresholds.wakeupTime

The time to wait in seconds until a LC is considered active. Note that it is crucial for the proper functioning of the
system to set this interval as accurate as possible. For example, if your system needs approximately 5 minutes to come
back online (which is actually the right value for some modern Blade HP servers) after being shutdown, set wake up
time to 300 seconds!

• energyManagement.commandExecutionTimeout

Sometimes the implemented drivers commands can be fragile and block the system if they do not terminate correctly.
You can use the command execution timeout to force termination after a predefined number of seconds. Note that it is
important to keep this value high enough in order to prevent situations where driver commands are aborted too early.

Host Monitoring

This section deals with the metric collection of the localcontrollers nodes.

• localController.hostmonitor

Declares your monitor(s) as string separated values.

Example :

1.1. Snoozenode Administration Guide 27

Snooze Documentation, Release 3.0.0rc1

localController.hostmonitor = ganglia1, libvirt, ganglia2

• localController.hostmonitor.interval

Collection interval. Can be overriden.

• localController.hostmonitor.numberOfMonitoringEntrie

Number of metrics to keep. can be overriden.

• localController.hostmonitor.estimator

Possible values are average or the fully qualified name of the host estimator class (see Plugins System Overview)

Estimator to use for the collected metrics. Can be overriden.

• localController.hostmonitor.<monitor>

Possible values are ganglia or the fully qualified name of the host monitor class.

Example :

localController.hostmonitor.<monitor> = org.inria.myriads.snoozenode.localcontroller.monitoring.api.impl.GangliaHostMonitor

The parameters below have to be repeated for each <monitor>

• localController.hostmonitor.<monitor>.options

Specific options of the monitor.

• localController.hostmonitor.<monitor>.published

String separated values of metrics to publish into Snooze.

• localController.hostmonitor.<monitor>.interval

Collection interval. Overrides the above parameter.

• localController.hostmonitor.<monitor>.numberOfMonitoringEntries

Number of monitoring values to keep.

• localController.hostmonitor.<monitor>.estimator

Estimator to use. Overrides the above parameter. * localController.hostmonitor.<monitor>.thresholds.<resource
name>

Thresholds to use for the resource.

Anomaly Detection

• localController.anomaly.detector

Possible values are simple or the fully qualified name of the detector class (see Plugins System Overview).

• localController.anomaly.detector.numberOfMonitoringEntries

NumberOfMonitoring entries to take into account for the estimation. Overrides estima-
tor.numberOfMonitoringEntries.

• localController.anomaly.detector.interval

Loop detection interval.

• localController.anomaly.detector.options

One line Json (key, value) string. Specific options of the detector.

28 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

Anomaly Resolver

• groupManager.anomaly.resolver

Possible values are underoverload or the fully qualified name of the detector class (see Plugins System Overview).

• groupManager.anomaly.resolver.numberOfMonitoringEntries

Number of monitoring entries to take into account for the resolution. Overrides estimator.numberOfMonitoringEntries.

• groupManager.anomaly.resolver.options

One line json (key, value) string. Specific options of the resolver.

Example :

{“overloadpolicy” : “org.inria.myriads.snoozenode.groupmanager.managerpoli
cies.relocation.api.impl.GreedyOverloadRelocation”, “underloadpolicy”: “org.inria.myriads.snoozenode.groupmanager.
managerpolicies.relocation.api.impl.GreedyUnderloadRelocation”}

Globals

• globals.pluginsDirectory

Indicates where plugins should be loaded from. Absolute path.

1.1.5 RabbitMQ

Since version 2.0 event messages can be sent on an RabbitMQ queue.

1. Installation

Install rabbitmq server from the package manager of your distribution.

on debian, install rabbitmq-server

Alternatively, you can use a the puppetlabs/rabbitmq puppet module to install rabbitmq.

2. Setup

The snooze node config file (snooze_node.cfg) contains a section dealing with the configuration of the rabbitmq

external.notifier.transport = RABBITMQ
external.notifier.address = localhost
external.notifier.port = 5672
external.notifier.username = snooze
external.notifier.password = snooze
external.notifier.vhost = snooze-vhost
external.notifier.faultTolerance.numberOfRetries = 10
external.notifier.faultTolerance.retryInterval = 10

Setup user and vhost accordingly to the snooze_node.cfg parameters :

rabbitmqctl add_user snooze snooze
rabbitmqctl add_vhost snooze-vhost
rabbitmqctl set_permissions -p snooze-vhost snooze ".*" ".*" ".*"

For further documentation about the message format used : see RabbitMQ message format

1.1. Snoozenode Administration Guide 29

Snooze Documentation, Release 3.0.0rc1

3. Enable extra plugins

Snooze web makes use of the stomp protocol to plot the hierarchy real time. You will need to install the web stomp
plugin in order to activate this feature See the rplugins page for instructions.

1.1.6 Cassandra

Since version 2.0 you can use the Cassandra distributed database as an alternative to the in memory database.

1. Installation

Install cassandra from the package manager of your distribution.

on debian, install cassandra

Alternatively you can use a proper puppet module.

2. Upload the schema

You will find the schema of the database in the Downloads_ page. Load it into cassandra :

cassandra-cli -f schemaup.cas

This will create all the column families needed by Snooze.

2. Setup

The snooze node config file (snooze_node.cfg) contains a section dealing with the configuration of the cassandra

#coma separated list of cassandra hosts
database.cassandra.hosts = <address:port>

Maximum number of monitoring entries to keep per group manager
database.numberOfEntriesPerGroupManager = 20

Maximum number of monitoring entries to keep per virtual machine
database.numberOfEntriesPerVirtualMachine = 30

Note that when using Cassandra database.numberOfEntriesPerGroupManager and
database.numberOfEntriesPerVirtualMachine correspond to the number of seconds the monitoring values will
be stored. It uses the TTL feature of the cassandra columns.

1.2 Snoozeimages Administration Guide

Snoozeimages projetc provides services for discovering and retrieving virtual machines images.

Snoozeimages has a RESTful API that allows querying of VM image metadata.

1.2.1 Deployment

The following sections deal with installing the Snoozeimages service.

30 Chapter 1. Contents:

http://www.rabbitmq.com/web-stomp.html

Snooze Documentation, Release 3.0.0rc1

SnoozeImages Debian package

Installation

Get the debian package from the website and install it with dpkg:

dpkg -i snoozeimage_X.X.X.deb

Install also libvirt.

apt-get install libvirt

Libvirt pool Backend

Snoozeimages can be configured to use libvirt pool as a storage backend. Thus you need to configure a libvirt instance
in order for the snoozeimages service to connnect to.

Configure a pool to serve virtual machine images Usually, a default pool exists once libvirt is install. You can
check by typing :

virsh pool-list --all

Make sure it is activated.

virsh pool-start [pool-name]

If no pool exists, create one.

virsh pool-define-as --name [pool-name] --target /var/lib/libvirt/images --type dir
virsh pool-build [pool-name]
virsh pool-start [pool-name]

Configure snoozeimages to connect to libvirt Configuration file can be found in /usr/share/snoozeimages/configs.

Once the pool is started, fill the config /usr/share/snoozeimages/configs/snooze_images.cfg with the appropriate pool
name.

Run the service

• Run the libvirt instance.

• Launch the snoozeimages daemon with :

service snoozeimages start

It will takes default the logger configuration file in /usr/share/snoozeimages/configs/log4j.xml and logs will be printed
in /tmp/snooze_images.log.

• If you prefer running the service manually, you can invoke :

java -jar path_to_snoozeimages_jar cfgFile logFile

The snoozeimages jar can be found in /usr/share/snoozeimages/

1.2. Snoozeimages Administration Guide 31

Snooze Documentation, Release 3.0.0rc1

Check your deployment

In order to make sure that the snoozeimages is running properly you can check the following :

• log file, by default located in /tmp/snoozeimages.log

• submit a curl command to the service :

curl localhost:4000/images

Puppet Recipes

1.2.2 Snoozeimages Config File

Snoozeimages system service configuration is done using its main configuration file
/usr/share/snoozeimages/configs/snooze_image.cfg.

Networking

• network.listen.address

Binds the Snoozeimages service to the specified address. By default it listen on all interfaces.

• network.listen.controlDataPort

Control data port is required for the REST communication on each node.

Repository Backend

• repository.type

This option corresponds to the backend type used to serve images. Only libvirt is supported for the moment.
Images will be served through the libvirt pool implementation. Note that the pool referenced by the reposi-
tory.libvirt.pool option must be created and accessible before starting the snoozeimages system service.

• repository.libvirt.address

Address of the libvirt backend to use.

• repository.libvirt.port

Port of the libvirt backend to use.

• repository.libvirt.hypervisor

Hypervisor to use.

• repository.libvirt.transport

transport protocol to use.

• repository.libvirt.pool

Libvirt pool to use as images repository backend.

32 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

1.3 SnoozeEC2 Administration Guide

Snoozeimages projetc provides services for discovering and retrieving virtual machines images.

Snoozeimages has a RESTful API that allows querying of VM image metadata.

1.3.1 Deployment

The following sections deal with installing the Snoozeec2 service.

SnoozeEC2 Debian package

Installation

Get the debian package from the website and install it with dpkg:

dpkg -i snoozeimage_X.X.X.deb

Files

The snoozeec2 files reside in /usr/share/snoozeec2 and the init script in /etc/init.d/snoozeec2.

Run the service

• You can launch the snoozeec2 daemon with :

service snoozeec2 start

It will takes default the logger configuration file in /usr/share/snoozeec2/configs/log4j.xml and logs will be printed in
/tmp/snooze_ec2.log.

• If you prefer running the service manually, you can invoke :

java -jar path_to_snoozeec2_jar cfgFile logFile

The snoozeec2 jar can be found in /usr/share/snoozeec2/

Puppet Recipes

1.3.2 SnoozeEC2 Config File

Snoozeec2 system service configuration is done using its main configuration file
/usr/share/snoozeec2/configs/snooze_ec2.cfg.

Networking

• network.listen.address

Binds the Snoozeec2 service to the specified address. By default it listen on all interfaces.

• network.listen.controlDataPort

1.3. SnoozeEC2 Administration Guide 33

Snooze Documentation, Release 3.0.0rc1

Control data port is required for the REST communication on each node.

Images Repository

• imageRepository.address

The address of one snoozeimages system service.

• imageRepository.port

The port which the snoozeimages repository service is listening on.

Bootstraps

• bootstrap.address

The address of one bootstrap node.

• bootstrap.port

The port which the bootstrap node is listening on.

1.3.3 Instances Types

The file /usr/share/snoozeec2/configs/instances contains all the instances type supported by SnoozeEC2.

1.4 Snoozeweb Administration Guide

Snoozeweb project provides services displying you snooze cluster through a web insterface.

1.4.1 Snoozeweb

The following sections deal with installing the Snoozeweb service. It will give you a minimal web GUI to get started
with Snooze.

• Get the code from the Downloads page and unpack it.

• Be sure to have bundle installed. Otherwise you can :

gem install bundle

• Once bundle is installed, run

cd snoozeweb
bundle install

• If the Snoozeweb service is on the same network as all the others system services of Snooze,

, fill the config.yml with the right parameters and then you can simply run :

ruby run.rb

• If the Snoozeweb service is not on the same network as all the others system services of Snooze, you will have
to tunnel the connections (read config.yml to know what connections have to be tunneled.)

Note that if you have deployed Snooze with the snooze-capistrano script, you can type :

34 Chapter 1. Contents:

http://snooze.inria.fr/download/

Snooze Documentation, Release 3.0.0rc1

BOOTSTRAP="you bootstrap" ruby g5k.rb

The previous command assumes that your login is the same on your local machine and on grid‘5000 frontend. Other-
wise open g5k.rb and change it.

1.5 Developper Guide

1.5.1 Python driver

This driver make use of the internal API. Unless you have specific requirements, we suggest to move to the EC2 API
and the corresponding driver.

Apache Libcloud (http://libcloud.apache.org/) driver will allow you to interact with snooze from a python script.

You need the code of the apache-libcloud project :

git clone https://github.com/apache/libcloud.git
git checkout 0.12.1

Next, install the specific files for Snooze driver from : https://github.com/msimonin/snooze-libcloud

You need to add three files :

libcloud/compute/providers.py
libcloud/compute/drivers/snooze.py
libcloud/compute/types.py

Use it

You can copy/paste the following code in the python interpreter or in a script file.

• First you need to import the requires libraries.

from libcloud.compute.types import Provider
from libcloud.compute.providers import get_driver

• Next, connect to the driver. Depending on your configuration pass one bootstrap address to the driver, here we
assume that a bootstrap is listenning on 127.0.0.1:5000.

Snooze = get_driver(Provider.SNOOZE)
driver = Snooze("127.0.0.1","5000")

Now you are ready to create a virtual machine and check its state.

n1 = driver.create_node(libvirt_templates=["vmtemplate.xml"], tx=12800, rx=12800)
print "VM %s status %s"%(n1.name,n1.state)

1.5. Developper Guide 35

http://libcloud.apache.org/
https://github.com/msimonin/snooze-libcloud

Snooze Documentation, Release 3.0.0rc1

1.5.2 Internal API Reference

Bootstrap

Methods Summary
destroyVirtualMachine
getLocalControllerList
getGroupLeaderDescription
getCompleteHierarchy
getGroupManagerDescriptions
getGroupManagerDescription
getLocalControllerDescriptions
getVirtualMachinesDescriptions
migrateVirtualMachine
rebootVirtualMachine
resumeVirtualMachine
shutdownVirtualMachine
startReconfiguration
startVirtualCluster
suspendVirtualMachine

In this section we assume that a bootstrap node is running on localhost.

destroyVirtualMachine

Method POST

Input Data The virtual machine identifier.

Returns boolean.

getLocalControllerList

Method GET

Returns The local controller list

getGroupLeaderDescription

Method GET

Returns The group manager description object of the group leader.

Using it

• Curl

36 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

($) curl localhost:5000/bootstrap?getGroupLeaderDescription

{
"id":"f5cfb585-800e-4ff8-a97f-5681d0610892",
"hostname":"mafalda",
"listenSettings":{

"controlDataAddress":{
"address":"127.0.0.1",
"port":5001

},
"monitoringDataAddress":{

"address":"127.0.0.1",
"port":6000

}
},
"localControllers":{
},
"heartbeatAddress":{

"address":"UNKNOWN",
"port":-1

},
"summaryInformation":{
},
"virtualMachines":[
]

}

• Java

import org.inria.myriads.snoozecommon.communication.NetworkAddress;
import org.inria.myriads.snoozecommon.communication.groupmanager.GroupManagerDescription;
import org.inria.myriads.snoozecommon.communication.rest.CommunicatorFactory;
import org.inria.myriads.snoozecommon.communication.rest.api.BootstrapAPI;

[...]

NetworkAddress bootstrapAddress = new NetworkAddress();
bootstrapAddress.setAddress("localhost");
bootstrapAddress.setPort(5000);
BootstrapAPI bootstrapCommunicator = CommunicatorFactory.newBootstrapCommunicator(bootstrapAddress);
GroupManagerDescription groupLeaderDescription = bootstrapCommunicator.getGroupLeaderDescription();

• Python (libcloud)

>> from libcloud.compute.types import Provider
>> from libcloud.compute.providers import get_driver

>> Snooze = get_driver(Provider.SNOOZE)
>> driver = Snooze("127.0.0.1","5000")

>> data = driver.get_groupleader()

>> print data

{
"summaryInformation": {},
"localControllers": {},
"hostname": "mafalda",
"heartbeatAddress": {

1.5. Developper Guide 37

Snooze Documentation, Release 3.0.0rc1

"port": -1,
"address": "UNKNOWN"

},
"virtualMachines": [],
"listenSettings": {

"controlDataAddress": {
"port": 5001,
"address": "127.0.0.1"

},
"monitoringDataAddress": {

"port": 6000,
"address": "127.0.0.1"

}
},
"id": "f5cfb585-800e-4ff8-a97f-5681d0610892"

}

getCompleteHierarchy

Method GET

Returns The complete hierarchy of the systems.

Using it

• Curl (2 GMs - 1 LC)

($) curl http://localhost:5000/bootstrap?getCompleteHierarchy

{
"groupManagerDescriptions":[

{
"id":"20fb798c-5d72-47d7-b80e-a613a81dc603",
"listenSettings":{

"controlDataAddress":{
"address":"127.0.0.1",
"port":5002

},
"monitoringDataAddress":{

"address":"127.0.0.1",
"port":6001

}
},
"localControllers":{

"ddb07acb-643e-4f9d-87e3-23ae4b629509":{
"id":"ddb07acb-643e-4f9d-87e3-23ae4b629509",
"controlDataAddress":{

"address":"127.0.0.1",
"port":5003

},
"status":"ACTIVE",
"hypervisorSettings":{

"port":16509,
"driver":"qemu",
"transport":"tcp",

38 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

"migration":{
"method":"live",
"timeout":60

}
},
"totalCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"wakeupSettings":{

"driver":"IPMI",
"options":"-I lanplus -H BMC_IP -U user -P password"

},
"hostname":"mafalda",
"virtualMachineMetaData":{

},
"assignedVirtualMachines":[

]
}

},
"heartbeatAddress":{

"address":"225.4.5.6",
"port":10001

},
"hostname":"mafalda",
"summaryInformation":{

"1373888959514":{
"timeStamp":1373888959514,
"usedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"requestedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"localControllers":[

],
"activeCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"passiveCapacity":[

0.0,
0.0,
0.0,
0.0

1.5. Developper Guide 39

Snooze Documentation, Release 3.0.0rc1

],
"legacyIpAddresses":[

]
},
"1373888956509":{

"timeStamp":1373888956509,
"usedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"requestedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"localControllers":[

],
"activeCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"passiveCapacity":[

0.0,
0.0,
0.0,
0.0

],
"legacyIpAddresses":[

]
},
"1373888953504":{

"timeStamp":1373888953504,
"usedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"requestedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"localControllers":[

],
"activeCapacity":[

4.0,
3958348.0,

40 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

131072.0,
131072.0

],
"passiveCapacity":[

0.0,
0.0,
0.0,
0.0

],
"legacyIpAddresses":[

]
},
"1373888950498":{

"timeStamp":1373888950498,
"usedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"requestedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"localControllers":[

],
"activeCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"passiveCapacity":[

0.0,
0.0,
0.0,
0.0

],
"legacyIpAddresses":[

]
},
"1373888947493":{

"timeStamp":1373888947493,
"usedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"requestedCapacity":[

0.0,
0.0,
0.0,

1.5. Developper Guide 41

Snooze Documentation, Release 3.0.0rc1

0.0
],
"localControllers":[

],
"activeCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"passiveCapacity":[

0.0,
0.0,
0.0,
0.0

],
"legacyIpAddresses":[

]
},
"1373888944487":{

"timeStamp":1373888944487,
"usedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"requestedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"localControllers":[

],
"activeCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"passiveCapacity":[

0.0,
0.0,
0.0,
0.0

],
"legacyIpAddresses":[

]
},
"1373888941482":{

"timeStamp":1373888941482,
"usedCapacity":[

0.0,

42 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

0.0,
0.0,
0.0

],
"requestedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"localControllers":[

],
"activeCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"passiveCapacity":[

0.0,
0.0,
0.0,
0.0

],
"legacyIpAddresses":[

]
},
"1373888938477":{

"timeStamp":1373888938477,
"usedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"requestedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"localControllers":[

],
"activeCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"passiveCapacity":[

0.0,
0.0,
0.0,
0.0

],

1.5. Developper Guide 43

Snooze Documentation, Release 3.0.0rc1

"legacyIpAddresses":[

]
},
"1373888935472":{

"timeStamp":1373888935472,
"usedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"requestedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"localControllers":[

],
"activeCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"passiveCapacity":[

0.0,
0.0,
0.0,
0.0

],
"legacyIpAddresses":[

]
},
"1373888932467":{

"timeStamp":1373888932467,
"usedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"requestedCapacity":[

0.0,
0.0,
0.0,
0.0

],
"localControllers":[

],
"activeCapacity":[

4.0,
3958348.0,
131072.0,

44 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

131072.0
],
"passiveCapacity":[

0.0,
0.0,
0.0,
0.0

],
"legacyIpAddresses":[

]
}

},
"virtualMachines":[

]
}

]
}

• Java

import org.inria.myriads.snoozecommon.communication.NetworkAddress;
import org.inria.myriads.snoozecommon.communication.groupmanager.repository.GroupLeaderRepositoryInformation;
import org.inria.myriads.snoozecommon.communication.rest.CommunicatorFactory;
import org.inria.myriads.snoozecommon.communication.rest.api.BootstrapAPI;

[...]

NetworkAddress bootstrapAddress = new NetworkAddress();
bootstrapAddress.setAddress("localhost");
bootstrapAddress.setPort(5000);
BootstrapAPI bootstrapCommunicator = CommunicatorFactory.newBootstrapCommunicator(bootstrapAddress);
GroupLeaderRepositoryInformation hierarchy = bootstrapCommunicator.getCompleteHierarchy();

• Python (libcloud)

Not implemented

getGroupManagerDescriptions

Method POST

Input data You must provide a JSON encoded hash in the body of your request which correspond to the HostListRe-
quest java object.

Returns The list of group managers matching the request.

getGroupManagerDescription

Method POST

Input Data The group manager identifier.

1.5. Developper Guide 45

Snooze Documentation, Release 3.0.0rc1

Returns The group manager description.

getLocalControllerDescriptions

Method POST

Input data You must provide a JSON encoded hash in the body of your request which correspond to the HostListRe-
quest java object.

Returns The list of group managers matching the request.

getVirtualMachinesDescriptions

Method POST

Input data You must provide a JSON encoded hash in the body of your request which correspond to the HostListRe-
quest java object.

Returns The list of virtual machines matching the request.

migrateVirtualMachine

Method POST

Input data You must provide a JSON encoded hash in the body of your request whichcorrespond to the ClientMi-
grationRequestSimple java object.

{
"virtualMachineId": "vm_0",
"localControllerId": "fba454bf-2688-44c5-bdb4-08478c9a5176"

}

Returns boolean

Examples The following command will migrate the virtualmachine vm_0 to localcontroller whose id is fba454bf....

curl -X ’POST’ -H "Content-type: application/json" -d ’{"virtualMachineId": "vm_0", "localControllerId": "fba454bf-2688-44c5-bdb4-08478c9a5176"}’ http://parapide-2:5000/bootstrap?migrateVirtualMachine

rebootVirtualMachine

Method POST

Input data The virtual machine identifier.

Returns boolean

46 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

resumeVirtualMachine

Method POST

Input data The virtual machine identifier.

Returns boolean

shutdownVirtualMachine

Method POST

Input data The virtual machine identifier.

Returns boolean

startReconfiguration

Method POST

Input data The groupmanager identifier.

Returns boolean

startVirtualCluster

Method POST

Input Data You must provide a JSON encoded hash in the body of your request that must contain a parameter
virtualMachineTemplates which value is an array of virtualMachineTemplate.

virtualMachineTemplate must contain the following parameters:

• libVirtTemplate : xml string representing the virtual machine to start.

This parameters is optional if vcpus, memory, imageId and name are given.

• networkCapacityDemand : hash which parameters are rxBytes and txBytes.

• vcpus : number of vcpus of the virtual machine.

• memory : amount of memory of the virtual machine.

• imageId : the disk image id of the virtual machine to boot from.

• name : name of the virtual machine.

A example is given below with one virtual machine:

1.5. Developper Guide 47

Snooze Documentation, Release 3.0.0rc1

{
"virtualMachineTemplates":[

{
"libVirtTemplate":"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?><domain type=\"kvm\"> <name>debian1</name> <uuid>0f476e56-67ea-11e1-858e-00216a972a36</uuid> <memory>200000</memory> <currentMemory>200000</currentMemory> <vcpu>1</vcpu> <os> <type arch=\"x86_64\" machine=\"pc-0.12\">hvm</type> <boot dev=\"hd\"/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset=\"utc\"/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk device=\"disk\" type=\"file\"> <driver name=\"qemu\" type=\"qcow2\"/> <source file=\"path_to_disk_image\"/> <target bus=\"virtio\" dev=\"vda\"/> <address bus=\"0x00\" domain=\"0x0000\" function=\"0x0\" slot=\"0x05\" type=\"pci\"/> </disk> <controller index=\"0\" type=\"ide\"> <address bus=\"0x00\" domain=\"0x0000\" function=\"0x1\" slot=\"0x01\" type=\"pci\"/> </controller> <interface type=\"bridge\"> <mac address=\"52:54:01:84:26:2c\"/> <source bridge=\"virbr0\"/> </interface> <serial type=\"pty\"> <target port=\"0\"/> </serial> <console type=\"pty\"> <target port=\"0\" type=\"serial\"/> </console> <graphics autoport=\"yes\" listen=\"0.0.0.0\" port=\"-1\" type=\"vnc\"/> <input bus=\"usb\" type=\"tablet\"/> <input bus=\"ps2\" type=\"mouse\"/> <memballoon model=\"virtio\"> <address bus=\"0x00\" domain=\"0x0000\" function=\"0x0\" slot=\"0x06\" type=\"pci\"/> </memballoon> </devices> </domain>",
"networkCapacityDemand":{

"rxBytes":12800.0,
"txBytes":12800.0

}
}

]
}

Return The assigned task identifier.

suspendVirtualMachine

Method POST

Input data The virtual machine identifier.

Returns boolean.

Group Leader

Methods Summary
startVirtualCluster
getVirtualClusterResponse
migrateVirtualMachine
getLocalControllerList

In this section we assume that the group leader node is running on localhost.

startVirtualCluster

Method POST

Input Data You must provide a JSON encoded hash in the body of your request that must contain a parameter
virtualMachineTemplates which value is an array of virtualMachineTemplate.

virtualMachineTemplate must contain the following parameters:

• libVirtTemplate : xml string representing the virtual machine to start.

This parameters is optional if vcpus, memory, imageId and name are given.

• networkCapacityDemand : hash which parameters are rxBytes and txBytes.

• vcpus : number of vcpus of the virtual machine.

• memory : amount of memory of the virtual machine.

• imageId : the disk image id of the virtual machine to boot from.

48 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

• name : name of the virtual machine.

A example is given below with one virtual machine :

{
"virtualMachineTemplates":[

{
"libVirtTemplate":"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?><domain type=\"kvm\"> <name>debian1</name> <uuid>0f476e56-67ea-11e1-858e-00216a972a36</uuid> <memory>200000</memory> <currentMemory>200000</currentMemory> <vcpu>1</vcpu> <os> <type arch=\"x86_64\" machine=\"pc-0.12\">hvm</type> <boot dev=\"hd\"/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset=\"utc\"/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk device=\"disk\" type=\"file\"> <driver name=\"qemu\" type=\"qcow2\"/> <source file=\"path_to_disk_image\"/> <target bus=\"virtio\" dev=\"vda\"/> <address bus=\"0x00\" domain=\"0x0000\" function=\"0x0\" slot=\"0x05\" type=\"pci\"/> </disk> <controller index=\"0\" type=\"ide\"> <address bus=\"0x00\" domain=\"0x0000\" function=\"0x1\" slot=\"0x01\" type=\"pci\"/> </controller> <interface type=\"bridge\"> <mac address=\"52:54:01:84:26:2c\"/> <source bridge=\"virbr0\"/> </interface> <serial type=\"pty\"> <target port=\"0\"/> </serial> <console type=\"pty\"> <target port=\"0\" type=\"serial\"/> </console> <graphics autoport=\"yes\" listen=\"0.0.0.0\" port=\"-1\" type=\"vnc\"/> <input bus=\"usb\" type=\"tablet\"/> <input bus=\"ps2\" type=\"mouse\"/> <memballoon model=\"virtio\"> <address bus=\"0x00\" domain=\"0x0000\" function=\"0x0\" slot=\"0x06\" type=\"pci\"/> </memballoon> </devices> </domain>",
"networkCapacityDemand":{

"rxBytes":12800.0,
"txBytes":12800.0

}
}

]
}

Return The assigned task identifier.

Using it

• Curl

($) curl -H "Content-Type: application/json" -X POST -d "$template" http://localhost:5001/groupmanager?startVirtualCluster

a4fba1c6-4c8f-4691-a530-01c067e8deb2

• Java

// Gets the leader address.
NetworkAddress bootstrapAddress = new NetworkAddress();
bootstrapAddress.setAddress("localhost");
bootstrapAddress.setPort(5000);
BootstrapAPI bootstrapCommunicator = CommunicatorFactory.newBootstrapCommunicator(bootstrapAddress);
GroupManagerDescription groupLeaderDescription = bootstrapCommunicator.getGroupLeaderDescription();

// Construct the virtual machine templates array.
VirtualClusterSubmissionRequest virtualClusterDescription = new VirtualClusterSubmissionRequest();
ArrayList<VirtualMachineTemplate> virtualMachineTemplates = new ArrayList<VirtualMachineTemplate>();
VirtualMachineTemplate virtualMachineTemplate = new VirtualMachineTemplate();
virtualMachineTemplate.setLibVirtTemplate("[...]");
NetworkDemand networkDemand = new NetworkDemand();
networkDemand.setRxBytes(12800);
networkDemand.setTxBytes(12800);
virtualMachineTemplate.setNetworkCapacityDemand(networkDemand);

virtualMachineTemplates.add(virtualMachineTemplate);
virtualClusterDescription.setVirtualMachineTemplates(virtualMachineTemplates);

// Call to the startVirtualCluster Method.
NetworkAddress groupLeaderAddress = groupLeaderDescription.getListenSettings().getControlDataAddress();
GroupManagerAPI groupLeaderCommunicator = CommunicatorFactory.newGroupManagerCommunicator(groupLeaderAddress);
String taskIdentifier = groupLeaderCommunicator.startVirtualCluster(virtualClusterDescription);

• Python (libcloud)

When using this driver, polling for the response is wrapped in the create_node method of the driver.

1.5. Developper Guide 49

Snooze Documentation, Release 3.0.0rc1

>> from libcloud.compute.types import Provider
>> from libcloud.compute.providers import get_driver
>> Snooze = get_driver(Provider.SNOOZE)
>> driver = Snooze("127.0.0.1","5000")

>> driver.create_node(libvirt_templates=["/home/msimonin/Images-VM/Snooze-images/vmtemplates/debian1.xml"])

Out << [<Node: uuid=b69042832fd33b092eb5d0211554d3c983c80ddf, name=debian1, state=RUNNING, public_ips=192.168.122.11, provider=Snooze ...>]

getVirtualClusterResponse

Method POST

Input Data You must provide a JSON encoded hash in the body of your request that must contain a string identifying
the cluster submission request.

Return The virtual cluster response or empty if the response isn’t available yet.

Using it

• Curl

($) curl -H "Content-Type: application/json" -X POST -d "a4fba1c6-4c8f-4691-a530-01c067e8deb2" http://localhost:5001/groupmanager?getVirtualClusterResponse

{
"errorCode":null,
"virtualMachineMetaData":[

{
"status":"RUNNING",
"virtualMachineLocation":{

"virtualMachineId":"debian1",
"localControllerId":"ddb07acb-643e-4f9d-87e3-23ae4b629509",
"groupManagerId":"20fb798c-5d72-47d7-b80e-a613a81dc603",
"groupManagerControlDataAddress":{

"address":"127.0.0.1",
"port":5002

},
"localControllerControlDataAddress":{

"address":"127.0.0.1",
"port":5003

}
},
"usedCapacity":{

},
"requestedCapacity":[

1.0,
200000.0,
12800.0,
12800.0

],
"ipAddress":"192.168.122.6",
"errorCode":"UNKNOWN",
"groupManagerControlDataAddress":{

50 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

"address":"127.0.0.1",
"port":5002

},
"xmlRepresentation":"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?><domain type=\"kvm\"> <name>debian1</name> <uuid>0f476e56-67ea-11e1-858e-00216a972a36</uuid> <memory>200000</memory> <currentMemory>200000</currentMemory> <vcpu>1</vcpu> <os> <type arch=\"x86_64\" machine=\"pc-0.12\">hvm</type> <boot dev=\"hd\"/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset=\"utc\"/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk device=\"disk\" type=\"file\"> <driver name=\"qemu\" type=\"qcow2\"/> <source file=\"/home/msimonin/Images-VM/Snooze-images/imgs/debian1.qcow2\"/> <target bus=\"virtio\" dev=\"vda\"/> <address bus=\"0x00\" domain=\"0x0000\" function=\"0x0\" slot=\"0x05\" type=\"pci\"/> </disk> <controller index=\"0\" type=\"ide\"> <address bus=\"0x00\" domain=\"0x0000\" function=\"0x1\" slot=\"0x01\" type=\"pci\"/> </controller> <interface type=\"bridge\"> <mac address=\"54:56:c0:a8:7a:6\"/> <source bridge=\"virbr0\"/> </interface> <serial type=\"pty\"> <target port=\"0\"/> </serial> <console type=\"pty\"> <target port=\"0\" type=\"serial\"/> </console> <graphics autoport=\"yes\" listen=\"0.0.0.0\" port=\"-1\" type=\"vnc\"/> <input bus=\"usb\" type=\"tablet\"/> <input bus=\"ps2\" type=\"mouse\"/> <memballoon model=\"virtio\"> <address bus=\"0x00\" domain=\"0x0000\" function=\"0x0\" slot=\"0x06\" type=\"pci\"/> </memballoon> </devices></domain>"

}
]

}

• Java

// This code can follow the code from above.
GroupManagerAPI groupLeaderCommunicator = CommunicatorFactory.newGroupManagerCommunicator(networkAddress);
virtualClusterResponse = groupLeaderCommunicator.getVirtualClusterResponse(taskIdentifier);

migrateVirtualMachine

Method POST

Input Data

You must provide a JSON encoded hash in the body of your request that must contain the following
parameters :

• sourceVirtualMachineLocation :

• destinationVirtualMachineLocation :

• destinationHypervisorSettings : can be left empty

• migrated : set to False

Return

Using it :

• Python (libcloud)

from libcloud.compute.types import Provider
from libcloud.compute.providers import get_driver
Snooze = get_driver(Provider.SNOOZE)
driver = Snooze("127.0.0.1","5000");

n1 = driver.create_node(libvirt_templates=["/home/msimonin/Images-VM/Snooze-images/vmtemplates/debian1.xml"],
tx=12800,
rx=12800

)
n2 = driver.create_node(libvirt_templates=["/home/msimonin/Images-VM/Snooze-images/vmtemplates/debian2.xml"],

tx=12800,
rx=12800

)

driver.migrate(n1[0],n2[0].extra.get("virtualMachineLocation"))

1.5. Developper Guide 51

Snooze Documentation, Release 3.0.0rc1

getLocalControllerList

Method GET

Return JSON encoded Local controller list (see below).

Using it :

• Curl

curl localhost:5000/bootstrap?getLocalControllerList

{
"localControllers":[

{
"id":"f5a4a86a-e83d-4508-9ca5-ff8f5d3724e3",
"controlDataAddress":{

"address":"127.0.0.1",
"port":5005

},
"status":"ACTIVE",
"hypervisorSettings":{

"port":16511,
"driver":"qemu",
"transport":"tcp",
"migration":{

"method":"live",
"timeout":60

}
},
"totalCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"virtualMachineMetaData":{

},
"wakeupSettings":{

"driver":"IPMI",
"options":"-I lanplus -H BMC_IP -U user -P password"

},
"hostname":"mafalda",
"assignedVirtualMachines":[

]
},
{

"id":"496de94b-bc00-4105-8c2d-dba3797e6a2a",
"controlDataAddress":{

"address":"127.0.0.1",
"port":5004

},
"status":"ACTIVE",
"hypervisorSettings":{

"port":16510,

52 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

"driver":"qemu",
"transport":"tcp",
"migration":{

"method":"live",
"timeout":60

}
},
"totalCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"virtualMachineMetaData":{

},
"wakeupSettings":{

"driver":"IPMI",
"options":"-I lanplus -H BMC_IP -U user -P password"

},
"hostname":"mafalda",
"assignedVirtualMachines":[

]
},
{

"id":"9d908d25-b6af-4e3c-bd71-ca6ac290ecf6",
"controlDataAddress":{

"address":"127.0.0.1",
"port":5003

},
"status":"ACTIVE",
"hypervisorSettings":{

"port":16509,
"driver":"qemu",
"transport":"tcp",
"migration":{

"method":"live",
"timeout":60

}
},
"totalCapacity":[

4.0,
3958348.0,
131072.0,
131072.0

],
"virtualMachineMetaData":{

},
"wakeupSettings":{

"driver":"IPMI",
"options":"-I lanplus -H BMC_IP -U user -P password"

},
"hostname":"mafalda",
"assignedVirtualMachines":[

]

1.5. Developper Guide 53

Snooze Documentation, Release 3.0.0rc1

}
]

}

Group Manager

External Methods Internal Methods
destroyVirtualMachine
rebootVirtualMachine
resumeVirtualMachine
shutdownVirtualMachine
suspendVirtualMachine

In this section we assume that the group leader node is running on localhost.

destroyVirtualMachine

Method POST

Input Data You must provide a JSON encoded hash in the body of your request which correspond to the Virtual-
MachineMachineLocation java object.

Return boolean.

Using it

• Python (libcloud)

The mechanism of getting the location of the virtual machine is wrapped in the call.

>> from libcloud.compute.types import Provider
>> from libcloud.compute.providers import get_driver
>> Snooze = get_driver(Provider.SNOOZE)
>> driver = Snooze("127.0.0.1","5000")

>> l = driver.create_node(libvirt_templates=["/home/msimonin/Images-VM/Snooze-images/vmtemplates/debian1.xml"])

Out << [<Node: uuid=b69042832fd33b092eb5d0211554d3c983c80ddf, name=debian1, state=RUNNING, public_ips=192.168.122.11, provider=Snooze ...>]

>> driver.destroy(l[0])

rebootVirtualMachine

Method POST

Input Data You must provide a JSON encoded hash in the body of your request which correspond to the Virtual-
MachineMachineLocation java object.

Return boolean.

54 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

Using it

• Python (libcloud)

>> driver.reboot(l[0])

resumeVirtualMachine

Method POST

Input Data You must provide a JSON encoded hash in the body of your request which correspond to the Virtual-
MachineMachineLocation java object.

Return boolean.

Using it

• Python (libcloud)

>> driver.resume(l[0])

shutdownVirtualMachine

Method POST

Input Data You must provide a JSON encoded hash in the body of your request which correspond to the Virtual-
MachineMachineLocation java object.

Return boolean.

Using it

• Python (libcloud)

>> driver.shutdown(l[0])

suspendVirtualMachine

Method POST

Input Data You must provide a JSON encoded hash in the body of your request which correspond to the Virtual-
MachineMachineLocation java object.

Return boolean.

1.5. Developper Guide 55

Snooze Documentation, Release 3.0.0rc1

Using it

• Python (libcloud)

>> driver.suspend(l[0])

Local Controller

1.5.3 EC2 API and integration with Libcloud, Euca2ools

Supported Actions

• DescribeInstances

• DescribeImages

• RunInstances

• TerminateInstances

• RebootInstances

Use with libcloud driver

from libcloud.compute.types import Provider
from libcloud.compute.providers import get_driver
import time

EC2_ACCESS_KEY = ""
EC2_SECRET_KEY = ""

Driver = get_driver(Provider.EUCALYPTUS)
conn = Driver(
EC2_ACCESS_KEY,
secret=EC2_SECRET_KEY,
host="localhost",
secure=False,
port=4001,
path="/")

images = conn.list_images()
print images
sizes = conn.list_sizes()
print sizes
node = conn.create_node(image=images[0], size=sizes[1], ex_mincount = 1, name = "vm")
time.sleep(5)
nodes = conn.list_nodes()
print nodes

Use with Euca2ools

First of all, install euca2ools program on your local machine. In order to use euca2ools you need to define some
environment variables, this can be done by storing them in a file, and by sourcing it.

56 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

snoozeeuca2oolsrc
export EC2_URL="http://<snoozeec2-address>:<snoozeec2-port>"
export S3_URL=""
export EUCALYPTUS_CERT=""
export EC2_CERT=""
export EC2_PRIVATE_KEY=""
export EC2_ACCESS_KEY=""
export EC2_SECRET_KEY=""

Source the file

source snoozeeuc2oolsrc

You can now start working with euca2ools

$) euca-describe-images

1.5.4 Snoozeimages API

Snoozeimages exposes a RESTful API to deal with image management.

Supported calls

• GET /images : Gets the list of all the images in the repository backend.

• GET /images/[id] : Gets the information of the image with given identifier.

• DELETE /images/[id] : Delete the specified image.

1.5.5 RabbitMQ message format

Snooze sent notifications messages over 3 topic exchanges :

• system exchange for messages concerning the system itself

• management exchange for messages concerning the virtual machines management

• monitoring exchange for monitoring messages (unused for the moment)

All message are JSON formatted.

System messages

The template for this kind of message is

{
"message" : MESSAGE
"eventType" : TYPE

}

The routing key depends on the sender. Below, you will find an example of such a message send by the leader once
elected with the routing key groupleader. Basically the message is an instance of the GroupManagerDescription class
reprepresenting the leader.

1.5. Developper Guide 57

Snooze Documentation, Release 3.0.0rc1

{
"message":{

"id":"518486ac-df5a-4e16-bfb9-238cbf2a9038",
"listenSettings":{

"controlDataAddress":{
"address":"127.0.0.1",
"port":5002

},
"monitoringDataAddress":{

"address":"127.0.0.1",
"port":6001

}
},
"localControllers":{

},
"heartbeatAddress":{

"address":"225.4.5.6",
"port":10001

},
"hostname":"mafalda",
"summaryInformation":{

},
"virtualMachines":[

]
},
"eventType":"GL_JOIN"

}

sender routing key eventType message
groupleader “groupleader” GL_JOIN GroupManagerDescription
groupleader “groupleader” GM_JOIN GroupManagerDescription
groupleader “groupleader” GM_FAILED GroupManagerId
groupmanager “groupmanager”.gmid LC_JOIN LocalControllerDescription
groupmanager “groupmanager”.gmid LC_FAILED LocalControllerId
groupmanager “groupmanager”.gmid LC_ANOMALY LocalcontrollerDescription
groupmanager “groupmanager”.gmid RECONFIGURATION ReconfigurationPlan

Management messages

The template for this kind of message is :

{
"message" : MESSAGE,
"status" : STATUS

}

The status can be either PENDING, ERROR, PROCESSED. The routing key depends on the sender, the virtual ma-
chine and the action it can be summarized as follow :

gmid.lcid.vmid.action

Below an example of a message received after a start request. The virtual machine debian1 is hosted by localcontroller
ca0b0e33-00e3-41f3-a301-0997ba614880 managed by groupmanager acc855f9-6c44-4413-b297-62c9c7c0b181 so
the routing key was :

58 Chapter 1. Contents:

Snooze Documentation, Release 3.0.0rc1

acc855f9-6c44-4413-b297-62c9c7c0b181.ca0b0e33-00e3-41f3-a301-0997ba614880.debian1.START

and the body of the message was an instance of VirtualMachineMetaData.

{
"message":{

"status":"RUNNING",
"virtualMachineLocation":{

"virtualMachineId":"debian1",
"localControllerId":"ca0b0e33-00e3-41f3-a301-0997ba614880",
"groupManagerId":"acc855f9-6c44-4413-b297-62c9c7c0b181",
"groupManagerControlDataAddress":{

"address":"127.0.0.1",
"port":5001

},
"localControllerControlDataAddress":{

"address":"127.0.0.1",
"port":5003

}
},
"usedCapacity":{

},
"requestedCapacity":[

1.0,
128000.0,
12800.0,
12800.0

],
"ipAddress":"192.168.122.2",
"errorCode":"UNKNOWN",
"groupManagerControlDataAddress":{

"address":"127.0.0.1",
"port":5001

},
"xmlRepresentation":"[...]"

},
"status":"PROCESSED"

}

routing key Message
gmid.lcid.vmid.START VirtualMachineMetaData
gmid.lcid.vmid.SUSPEND VirtualMachineMetaData
gmid.lcid.vmid.RESUME VirtualMachineMetaData
gmid.lcid.vmid.SHUTDOWN VirtualMachineMetaData
gmid.lcid.vmid.DESTROY VirtualMachineMetaData
gmid.lcid.vmid.MIGRATE VirtualMachineMetaData

1.6 Andvanced Developper Guide

1.6.1 Plugins System Overview

Snooze allows you to use plugins to modify the default behaviour of the application. This page will give you an
overview of which components you can plug in Snooze.

1.6. Andvanced Developper Guide 59

Snooze Documentation, Release 3.0.0rc1

General considerations

This section will guide you through the general mechanisms used in Snooze to load its plugins.

Plugins in Snooze are jar files containing classes (one or a set of) compiled outside of the core system and injected
at runtime into the system. The plugins have to be located in globals.pluginsDirectory (see Snoozenode Config File).
This injection takes place after getting the parameters needed by the plugin from the configuration file (by default
snooze_node.cfg).

A plugin contains a main class which derives from an abstract superclass (except for the monitoring estimator, see
below). This class must contain a constructor without parameter and a method initialize which is called right after the
constructor and is responsible for settings the specific parameter of the plugin.

Below we give a short description of the part which can be used as plugin in Snooze. You can refer to the javadoc
(javadoc) to figure out what is available inside your plugin learn from the snooze-plugins project (snooze-plugins).

Virtual Machines and Hosts Monitoring Estimator

• Virtual machine monitoring estimator has to implement VirtualMachineMonitoringEstimator.

This class is responsible for the estimation made on virtual machines resources (CPU, Memory and network).

• HostMonitor monitoring estimator has to implement HostMonitoringEstimator.

This class is responsible for the estimation made on host resources (defined in the configuration file).

Resource Demand Estimator

Resource demand estimator is used for estimate the node resources utilization (Groupmanagers, Localcontroller, Vir-
tualmachines), it is intensively used in placement algorithm (e.g sort the local controller, figure out if a group manager
has enough capacity ...).

• A new resource demand estimator has to extend ResourceDemandEstimator.

GroupManager Placement Policy

GroupManager Placement Policy is responsible for placing virtual machines on local controllers.

• A new group manager placement policy has to extend PlacementPolicy.

GroupLeader Dispatching Policy

GroupLeader Dispatching Policy is responsible for dispatching virtual machines on group managers.

• A new group leader dispatching policy has to extend DispatchingPolicy.

GroupLeader Assignement Policy

GroupLeader Assignement Policy is responsible for assignement of local controllers on group managers.

• A new group leader assignement policy has to extend AssignementPolicy.

60 Chapter 1. Contents:

http://snooze.inria.fr/community/javadoc/
https://github.com/msimonin/snooze-plugins

Snooze Documentation, Release 3.0.0rc1

Anomaly Detector

Anomaly detector is responsible for detecting anomaly on the local controller it runs. In case of detection it sends a
message to the group manager.

• A new anomaly detector has to extend AnomalyDetector.

Anomaly Resolver

Anomaly resolver is responsible for resolving an anomaly. Anomaly resolver receives the anomaly message sent by
the anomaly local controller.

• A new anomaly resolver has to extend AnomalyResolver.

Local Controller Host Monitor

A host monitor is responsible for getting metrics for the local controller it runs on. You can plug as many monitor you
want (be reasonable though).

• A new Host Monitor have to extend HostMonitor.

1.6.2 Plugins Developement

For plugin development, you can refer to snooze-plugins-development project.

1.6. Andvanced Developper Guide 61

https://github.com/msimonin/snooze-plugins

Snooze Documentation, Release 3.0.0rc1

62 Chapter 1. Contents:

CHAPTER

TWO

SUPPORT

• search

• mailing list

• issue tracker

• contact form

63

https://groups.google.com/group/snoozesoftware/
https://github.com/snoozesoftware/snoozenode/issues/
http://snooze.inria.fr/contact/

	Contents:
	Snoozenode Administration Guide

